Abstract
Federated learning has become a popular paradigm to enable multiple distributed clients collaboratively train a model, providing a promising privacy-preserving solution without data sharing. To fully make use of federated training efforts, it is critical to promote the global model performance as well as the generalization capability based on diverse data samples provided in the federated cohort. The Federated Tumor Segmentation (FeTS) Challenge 2022 proposes two tasks for participants to improve the federated training and evaluation. Specifically, task 1 seeks effective weight aggregation methods to create the global model given a pre-defined segmentation algorithm. Task 2 aims to find robust segmentation algorithms which perform well on unseen testing data from various remote independent institutions. In federated learning, the data collected from different institutions present heterogeneity, largely affecting the training behavior. The heterogeneous data results in the variation of clients’ local optimization, therefore making the local client update not consistent with each other. The vanilla weighted average aggregation only takes the number of samples into account but ignores the differences in clients’ updates. As for task 1, we devise a parameter distance-based aggregation algorithm to mitigate the drifts of client updates. On top of this, we further propose a client pruning strategy to reduce the convergence time upon uneven training time among local clients. Our method finally achieves the convergence score of 0.7433 and an average dice score of 71.02% on the validation data, which is split out from the training data. For task 2, we propose to use the nnU-Net as the backbone and utilize the test-time batch normalization, which incorporates test data specific mean and variance to fit the unseen test data distribution during the testing phase.
M. Jiang and H. Yang—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Annas, G.J.: Hipaa regulations - a new era of medical-record privacy? N. Engl. J. Med. 348(15), 1486–1490 (2003)
Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (brats-TCGA-GBM). The Cancer Imaging Archive (2017)
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (brats-TCGA-LGG). The Cancer Imaging Archive (2017)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data (170117) (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2019)
Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22
Dou, Q., et al.: Federated deep learning for detecting covid-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit. Med. 4(1), 1–11 (2021)
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)
Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)
Isensee, F., Jaeger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnu-net for brain tumor segmentation (2020)
Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11
Jiang, M., Wang, Z., Dou, Q.: Harmofl: harmonizing local and global drifts in federated learning on heterogeneous medical images. In: AAAI, vol. 36, pp. 1087–1095 (2022)
Jiang, M., Yang, H., Cheng, C., Dou, Q.: Iop-fl: inside-outside personalization for federated medical image segmentation. arXiv preprint arXiv:2204.08467 (2022)
Jiang, M., Yang, H., Li, X., Liu, Q., Heng, P.A., Dou, Q.: Dynamic bank learning for semi-supervised federated image diagnosis with class imbalance. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 196–206. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_19
Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 1–7 (2020)
Karargyris, A., et al.: Medperf: open benchmarking platform for medical artificial intelligence using federated evaluation. arXiv preprint arXiv:2110.01406 (2021)
Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML, pp. 5132–5143. PMLR (2020)
Li, D., Kar, A., Ravikumar, N., Frangi, A.F., Fidler, S.: Federated simulation for medical imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 159–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_16
Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16
Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR (2021)
Liu, Q., Yang, H., Dou, Q., Heng, P.A.: Federated semi-supervised medical image classification via inter-client relation matching. arXiv preprint arXiv:2106.08600 (2021)
McMahan, H.B., Moore, E., Ramage, D., Hampson, S.: Arcas. Communication-efficient learning of deep networks from decentralized data, B.A. (2017)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE TMI 34(10), 1993–2024 (2015)
Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008–2012. Neuro-oncology 17(suppl. 4), iv1–iv62 (2015)
Pati, S., et al.: The federated tumor segmentation (FETS) challenge (2021)
Pati, S., et al.: Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the IVY glioblastoma atlas project (IVY gap) dataset. Med. Phys. 12, 6039–6052 (2020)
Reina, G.A., et al.: Openfl: an open-source framework for federated learning (2021)
Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 1, 1–7 (2020)
Roth, H.R., et al.: Federated learning for beast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART DCL 2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18
Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional pruning without sharing patient data. Sci. Rep. 1, 1–12 (2020)
Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-11723-8_9
Silva, S., Gutman, B.A., Romero, E., Thompson, P.M., Altmann, A., Lorenzi, M.: Federated learning in distributed medical databases: Meta-analysis of large-scale subcortical brain data. In: ISBI, pp. 270–274. IEEE (2019)
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization (2021)
Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization (2020)
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM TIST 2, 1–19 (2019)
D Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation for federated learning with non-IID data. In: Albarqouni, S., et al. (eds.) DART DCL 2020. LNCS, vol. 12444, pp. 150–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_15
Acknowledgement
This work was supported by the Hong Kong Innovation and Technology Fund (Projects No. ITS/238/21).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, M., Yang, H., Zhang, X., Zhang, S., Dou, Q. (2023). Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-44153-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44152-3
Online ISBN: 978-3-031-44153-0
eBook Packages: Computer ScienceComputer Science (R0)