Skip to main content

Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14092))

Included in the following conference series:

  • 247 Accesses

Abstract

Federated learning has become a popular paradigm to enable multiple distributed clients collaboratively train a model, providing a promising privacy-preserving solution without data sharing. To fully make use of federated training efforts, it is critical to promote the global model performance as well as the generalization capability based on diverse data samples provided in the federated cohort. The Federated Tumor Segmentation (FeTS) Challenge 2022 proposes two tasks for participants to improve the federated training and evaluation. Specifically, task 1 seeks effective weight aggregation methods to create the global model given a pre-defined segmentation algorithm. Task 2 aims to find robust segmentation algorithms which perform well on unseen testing data from various remote independent institutions. In federated learning, the data collected from different institutions present heterogeneity, largely affecting the training behavior. The heterogeneous data results in the variation of clients’ local optimization, therefore making the local client update not consistent with each other. The vanilla weighted average aggregation only takes the number of samples into account but ignores the differences in clients’ updates. As for task 1, we devise a parameter distance-based aggregation algorithm to mitigate the drifts of client updates. On top of this, we further propose a client pruning strategy to reduce the convergence time upon uneven training time among local clients. Our method finally achieves the convergence score of 0.7433 and an average dice score of 71.02% on the validation data, which is split out from the training data. For task 2, we propose to use the nnU-Net as the backbone and utilize the test-time batch normalization, which incorporates test data specific mean and variance to fit the unseen test data distribution during the testing phase.

M. Jiang and H. Yang—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annas, G.J.: Hipaa regulations - a new era of medical-record privacy? N. Engl. J. Med. 348(15), 1486–1490 (2003)

    Article  Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (brats-TCGA-GBM). The Cancer Imaging Archive (2017)

    Google Scholar 

  4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (brats-TCGA-LGG). The Cancer Imaging Archive (2017)

    Google Scholar 

  5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data (170117) (2017)

    Google Scholar 

  6. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2019)

    Google Scholar 

  7. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

  8. Dou, Q., et al.: Federated deep learning for detecting covid-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit. Med. 4(1), 1–11 (2021)

    Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Google Scholar 

  10. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

  11. Isensee, F., Jaeger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnu-net for brain tumor segmentation (2020)

    Google Scholar 

  12. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

  13. Jiang, M., Wang, Z., Dou, Q.: Harmofl: harmonizing local and global drifts in federated learning on heterogeneous medical images. In: AAAI, vol. 36, pp. 1087–1095 (2022)

    Google Scholar 

  14. Jiang, M., Yang, H., Cheng, C., Dou, Q.: Iop-fl: inside-outside personalization for federated medical image segmentation. arXiv preprint arXiv:2204.08467 (2022)

  15. Jiang, M., Yang, H., Li, X., Liu, Q., Heng, P.A., Dou, Q.: Dynamic bank learning for semi-supervised federated image diagnosis with class imbalance. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 196–206. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_19

  16. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 1–7 (2020)

    Google Scholar 

  17. Karargyris, A., et al.: Medperf: open benchmarking platform for medical artificial intelligence using federated evaluation. arXiv preprint arXiv:2110.01406 (2021)

  18. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  19. Li, D., Kar, A., Ravikumar, N., Frangi, A.F., Fidler, S.: Federated simulation for medical imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 159–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_16

  20. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

  21. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR (2021)

    Google Scholar 

  22. Liu, Q., Yang, H., Dou, Q., Heng, P.A.: Federated semi-supervised medical image classification via inter-client relation matching. arXiv preprint arXiv:2106.08600 (2021)

  23. McMahan, H.B., Moore, E., Ramage, D., Hampson, S.: Arcas. Communication-efficient learning of deep networks from decentralized data, B.A. (2017)

    Google Scholar 

  24. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE TMI 34(10), 1993–2024 (2015)

    Google Scholar 

  25. Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008–2012. Neuro-oncology 17(suppl. 4), iv1–iv62 (2015)

    Google Scholar 

  26. Pati, S., et al.: The federated tumor segmentation (FETS) challenge (2021)

    Google Scholar 

  27. Pati, S., et al.: Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the IVY glioblastoma atlas project (IVY gap) dataset. Med. Phys. 12, 6039–6052 (2020)

    Google Scholar 

  28. Reina, G.A., et al.: Openfl: an open-source framework for federated learning (2021)

    Google Scholar 

  29. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 1, 1–7 (2020)

    Google Scholar 

  30. Roth, H.R., et al.: Federated learning for beast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART DCL 2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18

  31. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional pruning without sharing patient data. Sci. Rep. 1, 1–12 (2020)

    Google Scholar 

  32. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-11723-8_9

  33. Silva, S., Gutman, B.A., Romero, E., Thompson, P.M., Altmann, A., Lorenzi, M.: Federated learning in distributed medical databases: Meta-analysis of large-scale subcortical brain data. In: ISBI, pp. 270–274. IEEE (2019)

    Google Scholar 

  34. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization (2021)

    Google Scholar 

  35. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization (2020)

    Google Scholar 

  36. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM TIST 2, 1–19 (2019)

    Google Scholar 

  37. D Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation for federated learning with non-IID data. In: Albarqouni, S., et al. (eds.) DART DCL 2020. LNCS, vol. 12444, pp. 150–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_15

Download references

Acknowledgement

This work was supported by the Hong Kong Innovation and Technology Fund (Projects No. ITS/238/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, M., Yang, H., Zhang, X., Zhang, S., Dou, Q. (2023). Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44153-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44152-3

  • Online ISBN: 978-3-031-44153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics