Skip to main content

Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14092))

Included in the following conference series:

  • 208 Accesses

Abstract

Accurate and reproducible segmentation of brain tumors from multi-modal magnetic resonance (MR) scans is a pivotal step in practice. In this BraTS Continuous Evaluation initiative, we exploit a 3D nnU-Net for this task which was ranked at the \(6^\textrm{th}\) place (out of 1600 participants) in the BraTS’21 Challenge. We benefit from an ensemble of deep models enhanced with the expert knowledge of a senior radiologist captured in a form of several post-processing routines. The experimental study showed that infusing the domain knowledge into the algorithm can enhance their performance, and we obtained the average Dice score of 0.81977 (enhancing tumor), 0.87837 (tumor core), and 0.92723 (whole tumor) over the validation set. For the test data, we had the average Dice score of 0.86317, 0.87987, and 0.92838 for the enhancing tumor, tumor core and whole tumor. To validate the generalization capabilities of the nnU-Nets enhanced with domain knowledge, we performed their federated evaluation within the Federated Tumor Segmentation (FeTS) 2022 Challenge over the datasets captured across 30 institutions. Our technique was ranked \(2^\textrm{nd}\) across all participating teams, proving its generalization capabilities over unseen out-of-sample datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our team name is Graylight Imaging.

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)

    Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data. 4, 1–13 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (2017). The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (2017). The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  5. Bakas, S., et al.: Identifying the bestmachine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). arXiv.org:1811.02629

  6. Bontempi, D., Benini, S., Signoroni, A., Svanera, M., Muckli, L.: Cerebrum: a fast and fully-volumetric convolutional encoder-decoder for weakly-supervised segmentation of brain structures from out-of-the-scanner MRI. Med. Image Anal. 62, 101688 (2020)

    Article  Google Scholar 

  7. Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst. Appl. 38(5), 4998–5004 (2011)

    Article  Google Scholar 

  8. Estienne, T., et al.: Deep learning-based concurrent brain registration and tumor segmentation. Front. Comput. Neurosci. 14, 17 (2020)

    Article  Google Scholar 

  9. Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57(2), 378–390 (2011)

    Article  Google Scholar 

  10. Isensee, F., Jaeger, P., Kohl, S., Petersen, J., Maier-Hein, K.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 1–9 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  12. Ji, S., Wei, B., Yu, Z., Yang, G., Yin, Y.: A new multistage medical segmentation method based on SuperPixel and fuzzy clustering. Comput. Math. Methods Med. 2014, 747549:1-747549:13 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  14. Kotowski, K., Adamski, S., Machura, B., Zarudzki, L., Nalepa, J.: Coupling nnU-nets with expert knowledge for accurate brain tumor segmentation from MRI. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 197–209. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_18

    Chapter  Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  16. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  17. Nalepa, J., et al.: Data augmentation via image registration. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 4250–4254, September 2019. https://doi.org/10.1109/ICIP.2019.8803423

  18. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Article  Google Scholar 

  19. Nalepa, J., et al.: Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif. Intell. Med. 102, 101769 (2020)

    Article  Google Scholar 

  20. Pati, S., et al.: The Federated Tumor Segmentation (FeTS) Challenge (2021). https://doi.org/10.48550/ARXIV.2105.05874, arXiv.org:2105.05874

  21. Pipitone, J., et al.: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101, 494–512 (2014)

    Article  Google Scholar 

  22. Reina, G.A., et al.: OpenFL: an open-source framework for Federated Learning (2021). https://doi.org/10.48550/ARXIV.2105.06413, arXiv.org:2105.06413

  23. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 12598 (2020)

    Article  Google Scholar 

  24. Simi, V., Joseph, J.: Segmentation of glioblastoma multiforme from MR images - a comprehensive review. Egypt. J. Radiol. Nucl. Med. 46(4), 1105–1110 (2015)

    Article  Google Scholar 

  25. Wijata, A.M., Nalepa, J.: Unbiased validation of the algorithms for automatic needle localization in ultrasound-guided breast biopsies. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3571–3575 (2022). https://doi.org/10.1109/ICIP46576.2022.9897449

  26. Wu, W., Chen, A.Y.C., Zhao, L., Corso, J.J.: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241–253 (2014)

    Article  Google Scholar 

  27. Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

Download references

Acknowledgments

JN was supported by the Silesian University of Technology funds through the grant for maintaining and developing research potential. This work was supported by the Polish National Centre for Research and Development grant: POIR.01.01.01-00-0092/20 (Methods and algorithms for automatic coronary artery calcium scoring on cardiac computed tomography scans).

This paper is in memory of Dr. Grzegorz Nalepa, an extraordinary scientist and pediatric hematologist/oncologist at Riley Hospital for Children, Indianapolis, USA, who helped countless patients and their families through some of the most challenging moments of their lives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Nalepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotowski, K., Adamski, S., Machura, B., Malara, W., Zarudzki, L., Nalepa, J. (2023). Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44153-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44152-3

  • Online ISBN: 978-3-031-44153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics