Skip to main content

Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14092))

Included in the following conference series:

  • 69 Accesses

Abstract

It has been well accepted that artificial intelligence, machine learning, and deep learning (AI/ML/DL) techniques are on the path to making a revolutionary impact on health care. However, applying AI/MD/DL for clinical use is still challenging for reasons such as the concerns of security and privacy for sharing patient data among medical institutions, and medical data being heterogeneous. To solve those challenges, Federated learning (FL), which enables distributed training of DL networks without sharing data, could be a feasible solution as shown by the successful demonstration of FL in computer vision tasks. In the medical domain, Federated Tumor Segmentation(FeTS) challenge is the first challenge to address image segmentation using federated learning. In this paper, we evaluated and compared two FL frameworks, FedML and NVIDIA FLARE (NVFLARE), for FeTS 2022 challenge dataset in both distributed and centralized training methods. Using UNet as a baseline network, both FedML and NVFLARE are able to train the UNet models, and the accuracies of the two models are close to the accuracy of the model trained from centralized training. Models trained by NVFLARE performs a little better than models trained by FedML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 1–13 (2022)

    Article  Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  5. He, C.: FedML (2022). https://github.com/FedML-AI/FedML

  6. He, C., et al.: FedML: a research library and benchmark for federated machine learning. In: Advances in Neural Information Processing Systems, Best Paper Award at Federate Learning Workshop (2020)

    Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  10. Kamnitsas, K., Bai, W., Ferrante, E., McDonagh, S., Sinclair, M., Pawlowski, N., Rajchl, M., Lee, M., Kainz, B., Rueckert, D., Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  11. Langlotz, C.P., et al.: A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291(3), 781 (2019)

    Article  Google Scholar 

  12. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  14. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  15. NVIDIA: Nvidia federated learning application runtime environment (2022). https://github.com/NVIDIA/NVFlare

  16. Pati, S., et al.: The federated tumor segmentation (Fets) challenge. arXiv preprint arXiv:2105.05874 (2021)

  17. Price, W.N., Cohen, I.G.: Privacy in the age of medical big data. Nat. Med. 25(1), 37–43 (2019)

    Article  Google Scholar 

  18. Reddi, S., et al.: Adaptive federated optimization. arXiv preprint arXiv:2003.00295 (2020)

  19. Reina, G.A., et al.: OpenFL: an open-source framework for federated learning. arXiv preprint arXiv:2105.06413 (2021)

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  22. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  23. Shi, Y., Micklisch, C., Mushtaq, E., Avestimehr, S., Yan, Y., Zhang, X.: An ensemble approach to automatic brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. LNCS, vol. 12963, pp. 138–148. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_13

  24. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  25. Wang, W., Chen, C., Ding, M., Li, J., Yu, H., Zha, S.: Transbts: multimodal brain tumor segmentation using transformer. arXiv preprint arXiv:2103.04430 (2021)

  26. Wolny, A., et al.: Accurate and versatile 3d segmentation of plant tissues at cellular resolution. eLife 9, 57613 (2020). https://doi.org/10.7554/elife.57613

    Article  Google Scholar 

  27. Zerka, F., et al.: Systematic review of privacy-preserving distributed machine learning from federated databases in health care. JCO Clin. Cancer Inform. 4, 184–200 (2020)

    Article  Google Scholar 

  28. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  29. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgment

We acknowledge support from the National Science Foundation under Grant 2015254, from the University of Southern California, and from the University of Texas at Anderson Cancer Center, Texas Advanced Computing Center, and Oden Institute for Computational and Engineering Sciences initiative in Oncological Data and Computational Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaying Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Gao, H., Avestimehr, S., Yan, Y. (2023). Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44153-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44152-3

  • Online ISBN: 978-3-031-44153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics