Skip to main content

An Unpaired Cross-Modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14092))

Included in the following conference series:

  • 207 Accesses

Abstract

The crossMoDA challenge aims to automatically segment the vestibular schwannoma (VS) tumor and cochlea regions of unlabeled high-resolution T2 scans by leveraging labeled contrast-enhanced T1 scans. The 2022 edition extends the segmentation task by including multi-institutional scans. In this work, we proposed an unpaired cross-modality segmentation framework using data augmentation and hybrid convolutional networks. Considering heterogeneous distributions and various image sizes for multi-institutional scans, we apply the min-max normalization for scaling the intensities of all scans between -1 and 1, and use the voxel size resampling and center cropping to obtain fixed-size sub-volumes for training. We adopt two data augmentation methods for effectively learning the semantic information and generating realistic target domain scans: generative and online data augmentation. For generative data augmentation, we use CUT and CycleGAN to generate two groups of realistic T2 volumes with different details and appearances for supervised segmentation training. For online data augmentation, we design a random tumor signal reducing method for simulating the heterogeneity of VS tumor signals. Furthermore, we utilize an advanced hybrid convolutional network with multi-dimensional convolutions to adaptively learn sparse inter-slice information and dense intra-slice information for accurate volumetric segmentation of VS tumor and cochlea regions in anisotropic scans. On the crossMoDA2022 validation dataset, our method produces promising results and achieves the mean DSC values of 72.47% and 76.48% and ASSD values of 3.42 mm and 0.53 mm for VS tumor and cochlea regions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorent, R., et al.: CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Med. Image Anal.,  102628 (2022). https://doi.org/10.1016/j.media.2022.102628.

  2. Dorent, R., et al.L Scribble-based domain adaptation via co-segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 479–489 (2020)

    Google Scholar 

  3. Shapey, J., et al.: Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Sci. Data 8(1), 286 (2021). https://doi.org/10.1038/s41597-021-01064-w

    Article  Google Scholar 

  4. Shapey, J., et al.: An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI. J. Neurosurg. 134(1), 171–179 (2019)

    Article  Google Scholar 

  5. Wang, G., et al.: Automatic segmentation of vestibular schwannoma from T2-weighted mri by deep spatial attention with hardness-weighted loss. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 264–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_30

  6. Dong, Z., et al.: MNet: rethinking 2D/3D Networks for Anisotropic Medical Image Segmentation (2022).  http://arxiv.org/abs/2205.04846

  7. Zhu, J.-Y., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  8. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: Part IX, pp. 319–345. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

  9. Shin, H., Kim, H., Kim, S., Jun, Y., Eo, T., Hwang, D.:  COSMOS: cross-modality unsupervised domain adaptation for 3D medical image segmentation based on Target-aware Domain Translation and Iterative Self-Training, arXiv Prepr.  http://arxiv.org/abs/2203.16557

  10. Dong, H., Yu, F., Zhao, J., Dong, B., Zhang, L.:  Unsupervised Domain Adaptation in Semantic Segmentation Based on Pixel Alignment and Self-Training, pp. 4–8 (2021). http://arxiv.org/abs/2109.14219

  11. Choi, J.W.:  Using Out-of-the-Box Frameworks for Unpaired Image Translation and Image Segmentation for the crossMoDA Challenge, pp. 1–5 (2021). http://arxiv.org/abs/2110.01607

  12. Liu, H., Fan, Y., Cui, C.,  Su, D., McNeil, A., Dawant, B.M.: Unsupervised Domain Adaptation for Vestibular Schwannoma and Cochlea Segmentation via Semi-supervised Learning and Label Fusion, vol. 1, pp. 1–11 (2022).  http://arxiv.org/abs/2201.10647

  13. Huo, Y., et al.: Synseg-net: Synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imaging 38(4), 1016–1025 (2018)

    Article  Google Scholar 

  14. Dou, Q., et al.: PnP-AdaNet: Plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  15. Chen, C., et al.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  16. Pei, C., Wu, F., Huang, L., Zhuang, X.: Disentangle domain features for cross-modality cardiac image segmentation. Med. Image Anal. 71, 102078 (2021)

    Article  Google Scholar 

  17. Tsai, Y.-H., et al.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  18. Vesal, S., et al.: Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy Minimization for Multi-Modal Cardiac Image Segmentation. IEEE Trans. Med. Imaging 40(7), 1838–1851 (2021)

    Article  Google Scholar 

  19. Liu, H., et al.: A bidirectional multilayer contrastive adaptation network with anatomical structure preservation for unpaired cross-modality medical image segmentation. Comput. Biol. Med.,  105964 (2022)

    Google Scholar 

  20. Yao, K., et al.: A novel 3D unsupervised domain adaptation framework for cross-modality medical image segmentation. IEEE J. Biomed. Heal. Inform. 1 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, Y., Liu, H., Song, E., Cetinkaya, C., Hung, CC. (2023). An Unpaired Cross-Modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44153-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44152-3

  • Online ISBN: 978-3-031-44153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics