
PE-YOLO: Pyramid Enhancement Network for
Dark Object Detection

Xiangchen Yin1,2
(B)

, Zhenda Yu2,3, Zetao Fei4, Wenjun Lv1, and Xin Gao5

1 University of Science and Technology of China, Hefei, China
2 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center,

Hefei, China
yinxiangchen@mail.ustc.edu.cn, wlv@ustc.edu.cn

3 Anhui University, Hefei, China
wa22201140@stu.ahu.edu.cn

4 Qufu Normal University, Qufu, China
feizetao@163.com

5 China University of Mining & Technology, Beijing, China
bqt2000405024@student.cumtb.edu.cn

Abstract. Current object detection models have achieved good results
on many benchmark datasets, detecting objects in dark conditions re-
mains a large challenge. To address this issue, we propose a pyramid
enhanced network (PENet) and joint it with YOLOv3 to build a dark
object detection framework named PE-YOLO. Firstly, PENet decom-
poses the image into four components of different resolutions using the
Laplacian pyramid. Specifically we propose a detail processing mod-
ule (DPM) to enhance the detail of images, which consists of context
branch and edge branch. In addition, we propose a low-frequency en-
hancement filter (LEF) to capture low-frequency semantics and prevent
high-frequency noise. PE-YOLO adopts an end-to-end joint training ap-
proach and only uses normal detection loss to simplify the training pro-
cess. We conduct experiments on the low-light object detection dataset
ExDark to demonstrate the effectiveness of ours. The results indicate
that compared with other dark detectors and low-light enhancement
models, PE-YOLO achieves the advanced results, achieving 78.0% in
mAP and 53.6 in FPS, respectively, which can adapt to object de-
tection under different low-light conditions. The code is available at
https://github.com/XiangchenYin/PE-YOLO.

Keywords: Object detection · Low-light perception · Pyramid enhance-
ment ·

1 Introduction

In recent years, the emergence of convolutional neural networks (CNNs)
has promoted the development of object detection. A large number of detectors
have been proposed, and the performance of the benchmark datasets is getting
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enjoyable results [1,8,14,19]. However, most of the existing detectors are studied
in high-quality images under normal conditions. In the real environment, there
are often many bad lighting conditions such as night, dark light, and exposure,
so that the quality of the image decreases affects the performance of the detector.
The visual perception model enables the automatic system to understand the
environment and lay the foundation for subsequent tasks such as trajectory
planning, which requires a robust object detection or semantic segmentation
model. Fig. 1 is an example of dark object detection. It can be found that if the
image is appropriately enhanced and restores more potential information of the
original fuzzy object according to environmental conditions, the object detection
model is adapted to different low-light conditions, which is also a great challenge
in the practical application of the model.

Fig. 1. Example of dark object detection. In dark conditions PE-YOLO can recover
more potential information of object to get better detection results.

Currently, many methods have been proposed to solve the robustness prob-
lem in the dark scenes. Many low-light enhancement models [7, 10, 24, 26] have
been proposed to restore image details and reduce the impact of poor lighting
conditions. However, the structure of the low light enhancement model is com-
plex, which is not conducive to the real-time performance of the detector after
image enhancement. Most of these methods cannot be end-to-end trained with
the detector, and supervised learning is required for paired low-light images and
normal images. Object detection under low-light conditions can also be seen as
a domain adaptation problem. Some researchers [4,13,21] have used adversarial
learning to transfer the model from normal light to dark light. But they focus on
matching data distribution and overlook the potential information contained in
low-light images. In the past few years, some researchers [11, 15] have proposed
the method of using differentiable image processing (DIP) modules to enhance
images and train detectors on in an end-to-end manner. However, DIP are tra-
ditional methods such as white balance, which have limited enhancement effects
on images.
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To address the above issues, we propose a pyramid enhancement network
(PENet) that enhance low-light images and capture potential information about
objects. We have joint PENet with YOLOv3 to construct an end-to-end dark
object detection framework called PE-YOLO. In PENet, we first decompose
the image into multiple components of different resolutions using the Lapla-
cian pyramid. In each scale of the pyramid, we propose detail processing module
(DPM) and low-frequency enhancement filter (LEF) to enhance the components.
DPM consists of context branch and edge branch, which context branch glob-
ally enhance components by capturing long-range dependencies and edge branch
enhance the texture of components. LEF uses a dynamic low-pass filter to ob-
tain low-frequency semantics and prevent high-frequency noise to enrich feature
information. We only use normal detection loss during model training to sim-
plify the training process, without the need for clear ground truth of the image.
We validated the effectiveness of our method in the low-light object detection
dataset ExDark [16], the results show that compared with other dark detectors
and low-light enhancement models, PE-YOLO achieved the advanced results,
reaching 78.0% in mAP and 53.6 in FPS respectively, which can adapt to object
detection in dark conditions.

Our contribution could be summarised as follow:

• We build a pyramid enhancement network (PENet) to enhance different
low-light images. We propose a detail processing module (DPM) and a low-
frequency enhancement filter (LEF) to enhance the components.

• By jointing PENet with YOLOv3, we propose an end-to-end trained dark
object detection framework PE-YOLO to adapt the dark conditions. During
training, we only use normal detection loss.

• Compared with other dark detectors and low light enhancement models, our
PE-YOLO achieved advanced results in ExDark dataset, achieving enjoyable
accuracy and speed.

2 Related Work

2.1 Object Detection

Object detection models are divided into three categories: one-stage models,
two-stage models, and anchor-free-based models. Faster RCNN [20] does not
obtain region recommendations through selective search, but rather through a
region proposal network (RPN). It enables candidate region proposals, feature
extraction, classification, and regression to be trained end-to-end within the same
network. Cai et al. propose Cascade RCNN [2], which cascades multiple detection
heads, and the current level will refine the regression and classification results
of the previous level. YOLOv3 [19] proposed the new feature extraction network
DarkNet-53. Inspiring from the feature pyramid nework (FPN), YOLOv3 adopts
multi-scale feature fusion. In addition, recently anchor-free-based detectors [12,
23] have appeared, they abandoned anchor and changed it to key point-based
detection.



4 Yin et al.

2.2 Low-light Enhancement

The goal of low-light enhancement tasks is to improve human visual per-
ception by restoring image details and correcting color distortion and to provide
high-quality images for high-level visual tasks such as object detection. Zhang
et al. [26] propose Kind, it can be trained through paired images with different
levels of illumination, without the need for ground truth. Guo et al. [9] propose
Zero DCE, which transforms low-light enhancement tasks into image-specific
curve estimation problems. Lv et al. [17] propose a multi-branch low light en-
hancement network (MBLLEN), which extracts features at different levels and
generates output images through multi branch fusion. Cui et al. [5] propose an
Illumination Adaptive Transformer (IAT), through dynamic query learning to
construct an end-to-end Transformer. After the low-light enhancement model
restores the details of the image, the effect of the detector is improved. However,
most low-light enhancement models are complex and have a great impact on the
real-time performance of the detector.

2.3 Object Detection in Adverse Condition

Object detection under adverse conditions is crucial for the robust per-
ception of robots, and robust object detection models have emerged for some
adverse conditions. Some people transfer detectors from the source domain to
the target domain through unsupervised domain adaptation [4,13,21], adapting
the model to harsh environments. Liu et al. [15]propose IA-YOLO, which adap-
tively enhances each image to improve detection performance. They propose a
differentiable image processing (DIP) module for harsh weather and used a small
convolutional neural network (CNN-PP) to adjust the parameters of DIP. On
the basis of IA-YOLO, Kalwar et al. [11] propose GDIP-YOLO. GDIP proposes
a gating mechanism that allows multiple DIPs to operate in parallel. Qin et
al. [18] propose detection-driven enhancement network (DENet) is used for ob-
ject detection in adverse weather condition. Cui et al. [6] propose a multi-task
automatic encoding transform (MAET) for dark object detection, exploring the
potential space behind lighting conversion.

3 Method

Dark images have poor visibility due to low-light interference, which affects
the performance of the detector. To address this issue, we propose a pyramid
enhanced network (PENet) and joint YOLOv3 to construct a dark object de-
tection framework PE-YOLO. The overview of the framework of PE-YOLO is
shown in Fig. 2.

3.1 Overview of PE-YOLO

PENet decomposes the image into components of different resolutions through
the Laplacian pyramid. In PENet, we enhance the components of each scale
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through proposed detail processing module (DPM) and low-frequency enhance-
ment filter (LEF).

Define the image I ∈ Rh×w×3 as input, we obtain sub images of different
resolutions using a Gaussian pyramid.

G(x) = Down(Gaussian(x)) (1)

where Down represents downsampling, Gaussian represents Gaussian filter,
and the size of Gaussian kernel is 5×5. After each Gaussian pyramid operation,
the width and height of the image are halved, which means the resolution is the
original 1

4 . Obviously, the downsampling operation of the Gaussian pyramid is
irreversible. In order to recover the original high-resolution image after upsam-
pling, the lost information is required, and the lost information constitutes the
components of the Laplacian pyramid. The definition of the Laplacian pyramid
is

Li = Gi − Up(Gi+1) (2)

among which Li is the ith layer of the Laplacian pyramid, Gi represents the
ith layer of the Laplacian pyramid, and Up represents bilinear upsampling op-
eration. When reconstructing the image, we only need to perform the reverse
operation of (2) to restore the high-resolution image.

Fig. 2. Overview of PE-YOLO. We use detail processing module (DPM) and low-
frequency enhancement filter (LEF) to enhance the images.

We obtained four components of different scales through the Laplace pyra-
mid, as shown in Fig. 3. We found that the Laplacian pyramid pays more at-
tention to global information from bottom to top, while on the contrary it pays
more attention to local details. They are all information lost during the im-
age downsampling process, which is also the object of our PENet enhancement.
We enhance the components through detail processing module (DPM) and low-
frequency enhancement filter (LEF), and the operations of DPM and LEF are
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parallel. We will provide introduction to DPM and LEF later in next section.
By decomposing and reconstructing the Laplacian pyramid, PENet can be made
lightweight and effective, which helps to improve the performance of PE-YOLO.

Fig. 3. Visualization of each layer in the Laplacian pyramid. The second to fourth
column is the component of the Laplacian pyramid, and the resolution is reduced from
left to right.

3.2 Detail Enhancement

We propose a detail processing module (DPM) to enhance the components
in the Laplacian pyramid, which is divided into contextual branch and edge
branch. The details of DPM are shown in Fig. 4. Context branch obtains con-
textual information by capturing remote dependencies, and globally enhances
components. The edge branch uses two Sobel operators in different directions
to calculate image gradients to obtain edges and enhance the texture of the
components.

Context branch. We use a residual block to process features in before
and after obtaining remote dependencies, and residual learning allows rich low-
frequency information to be transmitted through skip connections. The first
residual block changes the channel of the feature from 3 to 32, and the second
residual block changes the channel of the feature from 32 to 3. Capturing global
information in the scene has been proven to be beneficial for low-level visual
tasks such as low-light enhancement. The structure of the context branch is
described in Fig. 4, which is defined as

CB(x) = x+ γ(F1(x̂)) (3)

where x̂ = σ(F2(x)) ·x, F is the convolutional layer with kernel 3×3, γ is Leaky
ReLU, and σ is the Softmax function.

Edge branch. Sobel operator is a discrete operator that uses both Gaussian
filter and differential derivation. It can find edges by calculating gradient approx-
imation. We use Sobel operators in both the horizontal and vertical directions
to re-extract edge information through convolutional filters and use residuals to
enhance the flow of information. This process is represented as

EB(x) = F3(Sobelh(x) + Sobelw(x)) + x (4)
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where Sobelh and Sobelw represents Sobel operations in the vertical and hori-
zontal directions, respectively.

3.3 Low-Frequency Enhancement Filter

In each scale component, the low-frequency component has most of the
semantic information in the image, and they are the key information for the
detector prediction. To enrich the semantics of the reconstructed image, we
propose low-frequency enhancement filter (LEF) to capture low-frequency in-
formation in the components. The details of LEF are shown in Fig. 5. Assuming
the component f ∈ Rh×w×3, we first transform it into f ∈ Rh×w×32 through a
convolutional layer. We use a dynamic low-pass filter to capture low-frequency
information, and we use average pooling for feature filtering, which only al-
lows information below the cutoff frequency to pass through. The low-frequency
thresholds for different semantics are different. Considering the multi-scale struc-
ture of Inception [22], we used adaptive average pooling with sizes of 1×1, 2×2,
3× 3, 6× 6, and used upsampling at the end of each scale to restore the original
size of the features. A low-pass filter is formed under average pooling of differ-
ent kernel sizes. We divide f into four parts through channel separation, namely
{f1, f2, f3, f4}. Each part is processed using different sizes of pooling, which is
described as

Filter(fi) = Up(βs(fi)) (5)

where fi is part of f divided on the channel, Up is bilinear interpolation sam-
pling, βs is an adaptive average pooling of different sizes of s× s. Finally, after
tensor splicing each {fi, i = 1, 2, 3, 4}, we restore them to f ∈ Rh×w×3.

4 Experiments

4.1 Dataset and Implementation Details

Dataset: We use the ExDark dataset to validate the effectiveness of our
PE-YOLO. ExDark is a low-light object detection dataset used for research on
object detection and image enhancement. It collected a total of 7363 images
under 10 different lighting conditions, from extremely low light to dusk, with
12 bounding box annotations of objects in the images. We divided ExDark into
80% for training and 20% for testing, and the specific division is consistent with
IAT [5] and MAET [6].

Details: All trained and tested images are resized to 608 × 608, and data
augmentation methods such as random cropping, flipping, and multi-scale resiz-
ing are used during training. Batch-size is set to 8, the optimizer uses SGD, the
initial learning rate is set to 0.001, and the weight decay is set to 0.0005. Train
PE-YOLO for 30 epochs and run our model on a single RTX 3090 GPU. The
deep learning framework is Pytorch, and we use mmdetection [3] to achieve our
model.
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Fig. 4. Detail of DPM, contains context
branch (CB) and edge branch (EB).

Fig. 5. Details of low-frequency enhance-
ment filter (LEF). LEF is composed of
adaptive averge pooling in different sizes
to intercept low-frequency components.

Evaluation: We use mAP and FPS to validate the effectiveness of our
model. mAP is the average AP of all categories in the detection model, and a
larger value indicates a higher accuracy of the model. It is represented as

mAP =

∑C
i=1 APi

C
(6)

where C is the number of categories, and AP is the Averge Precision for each
category, calculated by the area of the Precision Recall curve. FPS is the number
of image frames detected by the model per second, and a larger FPS indicates a
faster model detection speed.

4.2 Experimental Results

To verify the effectiveness of PE-YOLO, we conducted many experiments
on the ExDark dataset. Firstly, we compare PE-YOLO with other low-light
enhancement models. Due to the lack of detection capability of the low light
enhancement model, we will use the same detector as PE-YOLO to experiment
on all enhanced images. We set the IoU threshold of mAP to 0.5, and the perfor-
mance comparison is shown in Table 1. We found that directly using low-light
enhanced models before YOLOv3 did not significantly improve detection per-
formance. Our PE-YOLO is 1.2% and 1.1% higher on mAP than MBLLEN and
Zero-DCE, respectively, achieving the best results.
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Table 1. Performance comparisons between PE-YOLO and low-light enhancement
models. It shows mAP and AP in each class. The bold number has the highest score
in each column.

Model Venue Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table mAP

YOLOv3 [19] arXiv 79.8 75.3 78.1 92.3 83.0 68.0 69.0 79.0 78.0 77.3 81.5 55.5 76.4

KIND [26] MM2019 80.1 77.7 77.2 93.8 83.9 66.9 68.7 77.4 79.3 75.3 80.9 53.8 76.3

MBLLEN [17] BMVC 2018 82.0 77.3 76.5 91.3 84.0 67.6 69.1 77.6 80.4 75.6 81.9 58.6 76.8

Zero-DCE [9] CVPR 2020 84.1 77.6 78.3 93.1 83.7 70.3 69.8 77.6 77.4 76.3 81.0 53.6 76.9

PE-YOLOv3 (Ours) - 84.7 79.2 79.3 92.5 83.9 71.5 71.7 79.7 79.7 77.3 81.8 55.3 78.0

We visualized the detection results of different low light enhancement mod-
els, as shown in Fig. 6. We found that although MBLLEN and Zero DCE can
significantly improve the brightness of the image, they also enlarge the noise
in the image. PE-YOLO mainly captures the potential information of objects
in low-light images, while suppressing noise in high-frequency components, thus
PE-YOLO has better detection performance.

Fig. 6. Detection Results in PE-YOLO and other low-light enhancement models.

We compared the performance of PE-YOLO with other dark detectors, as
shown in Table 2. In addition, we visualized the detection results of the dark
detector and PE-YOLO, as shown in Fig. 7, which clearly showed that PE-YOLO
was more accurate in object detection. PE-YOLO is 0.7% and 0.2% higher in
mAP compared to DENet and IAT-YOLO pre-trained with the LOL dataset,
and our PE-YOLO is also almost the highest on FPS. The above data indicate
that PE-YOLO is more suitable for detecting objects in dark conditions.

4.3 Ablation Study

To analyze the effectiveness of each component in PE-YOLO, we conducted
ablation studies, and the results are shown in Table 3. After adopting context
branching, PE-YOLO increased from 76.4% to 77.0% in mAP, indicating that
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Table 2. Performance comparisons between PE-YOLO and dark detectors. The bold
number has the highest score in each column.

Model Venue Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table mAP FPS

YOLOv3 [19] arXiv 79.8 75.3 78.1 92.3 83.0 68.0 69.0 79.0 78.0 77.3 81.5 55.5 76.4 54.0

MAET [6] ICCV 2021 83.1 78.5 75.6 92.9 83.1 73.4 71.3 79.0 79.8 77.2 81.1 57.0 77.7 -

IAT-YOLOV3 (LOL pretrain) [5] BMVC2022 79.8 76.9 78.6 92.5 83.8 73.6 72.4 78.6 79.0 79.0 81.1 57.7 77.8 52.6

DENet [18] ACCV2022 80.4 79.7 77.9 91.2 82.7 72.8 69.9 80.1 77.2 76.7 82.0 57.2 77.3 54.8

PE-YOLOv3 (Ours) - 84.7 79.2 79.3 92.5 83.9 71.5 71.7 79.7 79.7 77.3 81.8 55.3 78.0 53.6

capturing remote dependencies is effective for enhancement. After adopting edge
branch, the mAP increased from 77.0% to 77.6%, indicating that edge branch
can enhance the texture of components and enhance the details of the enhanced
image. After adopting LEF, the mAP increased from 77.6% to 78.0%, indicating
that capturing low-frequency components is beneficial for obtaining potential
information in the image. In the end, our model improved from 76.4% to 78.0%
on mAP and only decreased by 0.4 on FPS.

Fig. 7. Detection Results in PE-YOLO and other dark detectors.

Table 3. Ablation study on PE-YOLO. “CB” represents context branch, “EB” rep-
resents edge branch, and LEF represents low-frequency enhancement filter.

DPM
LEF mAP FPS

CB EB

76.4 54.0

✓ 77.0 53.9

✓ ✓ 77.6 53.8

✓ ✓ ✓ 78.0 53.6
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5 Conclusion

To achieve more robust dark object detection, we propose a pyramid en-
hancement network (PENet) that performs detail restoration and captures po-
tential information. By combining PENet and YOLOv3, we build a dark object
detection framework named PE-YOLO. We first use the Laplacian pyramid to
decompose the image into four components with different resolutions, and pro-
pose a detail processing module (DPM) and a low-frequency enhancement filter
(LEF) for component enhancement. In addition, PE-YOLO trains in an end-
to-end way, without additional loss function. We conducted experiments in the
ExDark dataset, and the experimental results show that compared with the low-
light enhancement models and the dark detectors, PE-YOLO achieves the best
results and can effectively detect objects in dark conditions. However, our model
should be studied on more detectors and further improve performance while
maintaining lightweight.
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