Skip to main content

Region Feature Disentanglement for Domain Adaptive Object Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14260))

Included in the following conference series:

  • 977 Accesses

Abstract

In recent years, deep learning based object detection has shown impressive results. However, applying an object detector learned from one data domain to another one often faces performance degradation due to the domain shift problem. To improve the generalization ability of object detectors, the majority of existing domain adaptation methods alleviate the domain bias either on the feature encoder or instance classifier by adversarial learning. Differently, we try to alleviate domain discrepancy in the region proposal network (RPN) by performing feature disentanglement. To this end, an extractor is devised to extract domain-specific foreground representations from both the source and target features, respectively. Then, domain-invariant representations are decomposed from the domain-specific features by the disentanglement module. Through the decoupling operation, the gap between the domain-specific and domain-invariant features is enlarged, which promotes RPN feature to contain more domain-invariant information. Furthermore, we propose dynamic weighted adversarial training to alleviate the unstable training caused by adversarial learning. We conduct extensive experiments on multiple domain adaptation scenarios, and our experiment results demonstrate the effectiveness of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 343–351. NIPS 2016 (2016)

    Google Scholar 

  2. Cai, R., Li, Z., Wei, P., Qiao, J., Zhang, K., Hao, Z.: Learning disentangled semantic representation for domain adaptation. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 2060–2066. IJCAI 2019 (2019)

    Google Scholar 

  3. Chen, C., Zheng, Z., Ding, X., Huang, Y., Dou, Q.: Harmonizing transferability and discriminability for adapting object detectors. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8866–8875 (2020)

    Google Scholar 

  4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  7. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4089–4099 (2021)

    Google Scholar 

  8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the International Conference on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  10. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, pp. 2672–2680 (2014)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  12. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? arXiv preprint arXiv:1610.01983 (2016)

  13. Liu, D., Zhang, C., Song, Y., Huang, H., Wang, C., Barnett, M., Cai, W.: Decompose to adapt: cross-domain object detection via feature disentanglement. IEEE Trans. Multimedia 25, 1333–1344 (2022)

    Article  Google Scholar 

  14. Liu, Y.C., Yeh, Y.Y., Fu, T.C., Wang, S.D., Chiu, W.C., Wang, Y.C.F.: Detach and adapt: Learning cross-domain disentangled deep representation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8867–8876 (2018)

    Google Scholar 

  15. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, vol. 97, pp. 4114–4124 (2019)

    Google Scholar 

  16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  17. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: 4th International Conference on Learning Representations, ICLR 2016, Conference Track Proceedings (2016)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  19. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6956–6965 (2019)

    Google Scholar 

  20. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

    Google Scholar 

  22. VS, V., Gupta, V., Oza, P., Sindagi, V.A., Patel, V.M.: MeGA-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4514–4524 (2021)

    Google Scholar 

  23. Wang, Y., Zhang, R., Zhang, S., Li, M., Xia, Y., Zhang, X., Liu, S.: Domain-specific suppression for adaptive object detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9598–9607 (2021)

    Google Scholar 

  24. Wu, A., Liu, R., Han, Y., Zhu, L., Yang, Y.: Vector-decomposed disentanglement for domain-invariant object detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9322–9331 (2021)

    Google Scholar 

  25. Xie, R., Yu, F., Wang, J., Wang, Y., Zhang, L.: Multi-level domain adaptive learning for cross-domain detection. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3213–3219 (2019)

    Google Scholar 

  26. Yang, X., Wan, S., Jin, P.: Domain-invariant region proposal network for cross-domain detection. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020)

    Google Scholar 

  27. Zhang, Y., Wang, Z., Mao, Y.: RPN prototype alignment for domain adaptive object detector. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12420–12429 (2021)

    Google Scholar 

  28. Zhao, L., Wang, L.: Task-specific inconsistency alignment for domain adaptive object detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14197–14206 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Anhui Province (Grant No. 2208085MF157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhong Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Wan, S., Jin, P. (2023). Region Feature Disentanglement for Domain Adaptive Object Detection. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14260. Springer, Cham. https://doi.org/10.1007/978-3-031-44195-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44195-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44194-3

  • Online ISBN: 978-3-031-44195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics