Skip to main content

Incremental Recommendation Algorithm Based on the Influence Propagation Model

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14260))

Included in the following conference series:

  • 989 Accesses

Abstract

Recently, Graph based recommendation algorithms have gained more and more attention due to their flexible and unified embedding representation of both users and items as well as the effective modeling of context information for efficient recommendation. However, most of the existing graph recommendation methods are designed upon the static interaction graph, while neglecting the dynamic evolution of the graph. This paper proposes a lightweight Influence Propagation Model, namely IPM, for efficient recommendation on the dynamic evolving graphs. Specifically, IPM models the accumulating and propagating procedure of influence on the user-item interaction graph to obtain the characteristics of users and items. For dynamic changed edges of the graph, the amount of information about the relevant users and items can be quickly updated by propagating the impact associated with the added interactions. Our model exhibits very efficient performance and comparable recommendation results with the same experimental setup compared to advanced graph recommendation algorithms and dynamic graph embedding algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://files.grouplens.org/datasets/movielens/.

  2. 2.

    https://github.com/gusye1234/LightGCN-PyTorch.

  3. 3.

    https://github.com/houchengbin/GloDyNE .

  4. 4.

    https://gitlab.com/fildne.

References

  1. Bass, F.M.: A new product growth for model consumer durables. Manage. Sci. 15(5), 215–227 (1969)

    Article  MATH  Google Scholar 

  2. Bielak, P., Tagowski, K., Falkiewicz, M., Kajdanowicz, T., Chawla, N.V.: FILDNE: a framework for incremental learning of dynamic networks embeddings. Knowl.-Based Syst. 236, 107453 (2022)

    Google Scholar 

  3. Celma, O.: Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13287-2

    Book  Google Scholar 

  4. Dai, H., Wang, Y., Trivedi, R., Song, L.: Deep coevolutionary network: embedding user and item features for recommendation. arXiv preprint arXiv:1609.03675 (2016)

  5. Du, L., Wang, Y., Song, G., Lu, Z., Wang, J.: Dynamic network embedding: an extended approach for skip-gram based network embedding. In: IJCAI, vol. 2018, pp. 2086–2092 (2018)

    Google Scholar 

  6. Gao, C., et al.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recommender Syst. 1, 1–51 (2022)

    Google Scholar 

  7. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  8. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  10. Guo, L., Yin, H., Wang, Q., Chen, T., Zhou, A., Quoc Viet Hung, N.: Streaming session-based recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1569–1577 (2019)

    Google Scholar 

  11. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  13. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558 (2016)

    Google Scholar 

  14. Hou, C., Fu, G., Yang, P., Hu, Z., He, S., Tang, K.: Robust dynamic network embedding via ensembles. arXiv preprint arXiv:2105.14557 (2021)

  15. Hou, C., Zhang, H., He, S., Tang, K.: GloDyNE: global topology preserving dynamic network embedding. IEEE Trans. Knowl. Data Eng. 34(10), 4826–4837 (2020)

    Article  Google Scholar 

  16. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

    Google Scholar 

  17. Latifi, S., Jannach, D.: Streaming session-based recommendation: when graph neural networks meet the neighborhood. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 420–426 (2022)

    Google Scholar 

  18. Liang, D., Charlin, L., McInerney, J., Blei, D.M.: Modeling user exposure in recommendation. In: Proceedings of the 25th International Conference on World Wide Web, pp. 951–961 (2016)

    Google Scholar 

  19. Liu, F., Cheng, Z., Zhu, L., Gao, Z., Nie, L.: Interest-aware message-passing gcn for recommendation. In: Proceedings of the Web Conference 2021, pp. 1296–1305 (2021)

    Google Scholar 

  20. Liu, H., Wei, Y., Yin, J., Nie, L.: HS-GCN: hamming spatial graph convolutional networks for recommendation. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  21. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: scalable dynamic network embedding. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3762–3765. IEEE (2018)

    Google Scholar 

  22. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  24. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  25. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  26. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  27. Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 726–735 (2021)

    Google Scholar 

  28. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  29. Yu, W., Zhang, Z., Qin, Z.: Low-pass graph convolutional network for recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8954–8961 (2022)

    Google Scholar 

  30. Zhang, Y., et al.: How to retrain recommender system? A sequential meta-learning method. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1479–1488 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Program of Guangzhou, China (2023B03J1388) and the Key-Area Research and Development Program of Guangzhou City (202206030009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Lv or Hongmin Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Lv, J., Liu, C., Cai, H. (2023). Incremental Recommendation Algorithm Based on the Influence Propagation Model. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14260. Springer, Cham. https://doi.org/10.1007/978-3-031-44195-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44195-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44194-3

  • Online ISBN: 978-3-031-44195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics