Skip to main content

Automatic Driving Scenarios: A Cross-Domain Approach for Object Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

As autonomous driving technology advances, the need for accurate and robust object detection in various driving environments has become more urgent. However, domain adaptation presents a significant challenge due to the impact of weather, lighting, and scene context on object detection models. To address this issue, we propose a new method that utilizes pseudo-labels. Our approach involves two modules: the Category-Adversarial-Adaptive (CAA) and the Regression-Adversarial-Adaptive (RAA), which generate pseudo-labels. The detector is then trained on both source domain data and the target domain with pseudo-labels, resulting in improved cross-domain performance. The CAA and RAA modules operate independently and complement each other, allowing them to adapt to their respective detection tasks without interference. Furthermore, we demonstrate the effectiveness of loss smoothing in enhancing the model’s generalization performance. Our experimental results indicate that our model outperforms classic models, achieving improvements of 0.9\(\%\), 2\(\%\), and 1.4\(\%\) in the cross-domain challenges of SIM10K to Cityscape, KITTI to Cityscape, and Cityscape to foggyCityscape, respectively.

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62001103 and U1936201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  2. Liu, Z., et al.: Swin Transformer V2: scaling up capacity and resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  3. Wang, C., Bochkovskiy, A., Liao, H.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  4. Chen, Q., et al.: Group DETR v2: strong object detector with encoder-decoder pretraining. arXiv preprint arXiv:2211.03594 (2022)

  5. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  7. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  9. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126, 973–992 (2018)

    Article  Google Scholar 

  10. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? arXiv preprint arXiv:1610.01983 (2016)

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  12. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  13. Xie, R., Yu, F., Wang, J., Wang, Y., Zhang, L.: Multi-level domain adaptive learning for cross-domain detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. pp. 3213–3219 (2019)

    Google Scholar 

  14. Yang, X., Wan, S., Jin, P.: Domain-invariant region proposal network for cross-domain detection. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  15. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6956–6965 (2019)

    Google Scholar 

  16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  17. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I 14, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  24. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 687–696 (2019)

    Google Scholar 

  25. Xu, M., Wang, H., Ni, B., Tian, Q., Zhang, W.: Cross-domain detection via graph-induced prototype alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12355–12364 (2020)

    Google Scholar 

  26. He, Z., Zhang, L.: Multi-adversarial faster-RCNN for unrestricted object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6668–6677 (2019)

    Google Scholar 

  27. Soviany, P., Ionescu, R.T., Rota, P., Sebe, N.: Curriculum self-paced learning for cross-domain object detection. Comput. Vis. Image Underst. 204, 103166 (2021)

    Article  Google Scholar 

  28. Zhang, Y., Wang, Z., Mao, Y.: RPN prototype alignment for domain adaptive object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12425–12434 (2021)

    Google Scholar 

  29. Tian, K., Zhang, C., Wang, Y., Xiang, S., Pan, C.: Knowledge mining and transferring for domain adaptive object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9133–9142 (2021)

    Google Scholar 

  30. Hsu, C.C., Tsai, Y.H., Lin, Y.Y., Yang, M.H.: Every pixel matters: center-aware feature alignment for domain adaptive object detector. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part IX 16, vol. 12354, pp. 733–748. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_42

  31. Xu, C.D., Zhao, X.R., Jin, X., Wei, X.S.: Exploring categorical regularization for domain adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11724–11733 (2020)

    Google Scholar 

  32. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  33. Jiang, J., Chen, B., Wang, J., Long, M.: Decoupled adaptation for cross-domain object detection. arXiv preprint arXiv:2110.02578 (2021)

  34. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning. PMLR (2019)

    Google Scholar 

  35. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  37. Vs, V., Gupta, V., Oza, P., Sindagi, V.A., Patel, V.M.: Mega-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4516–4526 (2021)

    Google Scholar 

  38. Zheng, Y., Huang, D., Liu, S., Wang, Y.: Cross-domain object detection through coarse-to-fine feature adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13766–13775 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Chen, J., Li, L., Ma, Y., Huang, Y. (2023). Automatic Driving Scenarios: A Cross-Domain Approach for Object Detection. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14260. Springer, Cham. https://doi.org/10.1007/978-3-031-44195-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44195-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44194-3

  • Online ISBN: 978-3-031-44195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics