Skip to main content

Attractor Dynamics Drive Flexible Timing in Birdsong

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Timing is a critical component of a wide range of sensorimotor tasks that can span from a few milliseconds up to several minutes. While it is assumed that there exist several distributed systems that are dedicated for production and perception [1], the neuronal mechanisms underlying precise timing remain unclear. Here, we are interested in the neural mechanisms of sub-second timing with millisecond precision. To this end, we study the control of song timing in male Zebra Finches whose song production relies on the tight coordination of vocal muscles. There, the premotor nucleus HVC (proper name) is responsible for the precise control of timing. Current models of HVC rely on the synfire chain, a pure feed-forward network. However, synfire chains are fragile regarding noise and are only functional for a narrow range of feed-forward weights, requiring fine tuning during learning. In the present work, we propose that HVC can be modelled using a ring attractor model [2], where recurrent connections allow the formation of an activity bump that remains stable across a wide range of weights and different levels of noise. In the case of asymmetrical connectivity, the bump of activity can “move” across the network, hence providing precise timing. We explore the plasticity of syllable duration in this framework using a reward-driven learning paradigm and a reward-modulated covariance learning rule applied to the network’s synaptic weights [3]. We show that the change in duration induced by the learning paradigm is specific to the target syllable, consistent with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hazeltine, E., Helmuth, L.L., Ivry, R.B.: Neural mechanisms of timing. Trends Cogn. Sci. 1(5), 163–169 (1997). https://doi.org/10.1016/s1364-6613(97)01058-9

    Article  Google Scholar 

  2. Hansel, D., Sompolinsky, H.: Modeling feature selectivity in local cortical circuits. Book Chapter (1998)

    Google Scholar 

  3. Williams, R.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  4. Robbe, D.: Lost in time: rethinking duration estimation outside the brain. PsyArXiv (2021). https://doi.org/10.31234/osf.io/3bcfy

  5. Ivry, R., Schlerf, J.: Dedicated and intrinsic models of time perception. Trends Cogn. Sci. 12(7), 273–80 (2008). https://doi.org/10.1016/j.tics.2008.04.002

    Article  Google Scholar 

  6. Goel, A., Buonomano, D.V.: Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments. Philos. Trans. R. Soc. B: Biol. Sci. 369(1637), 20120460 (2014). https://doi.org/10.1098/rstb.2012.0460

    Article  Google Scholar 

  7. Buonomano, D.V., Laje, R.: Population clocks: motor timing with neural dynamics. Trends Cogn. Sci. 14(12), 520–527 (2010). https://doi.org/10.1016/j.tics.2010.09.002

    Article  Google Scholar 

  8. Durstewitz, D.: Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003). https://doi.org/10.1523/JNEUROSCI.23-12-05342

    Article  Google Scholar 

  9. Simen, P., Balci, F., Souza, L., Cohen, J., Holmes, P.: A model of interval timing by neural integration. J. Neurosci. Official J. Soc. Neurosci. 31, 9238–9253 (2011). https://doi.org/10.1523/JNEUROSCI.3121-10.2011

    Article  Google Scholar 

  10. Balci, F., Simen, P.: A decision model of timing. Curr. Opinion Behav. Sci. 8, 94–101 (2016). https://doi.org/10.1016/j.cobeha.2016.02.002

    Article  Google Scholar 

  11. Hahnloser, R., Kozhevnikov, A., Fee, M.: An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002). https://doi.org/10.1038/nature00974

    Article  Google Scholar 

  12. Long, M., Jin, D., Fee, M.: Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394–399 (2010). https://doi.org/10.1038/nature09514

    Article  Google Scholar 

  13. Jin, D., Ramazanoğlu, F., Seung, H.: Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J. Comput. Neurosci. 23, 283–299 (2007)

    Article  MathSciNet  Google Scholar 

  14. Perin, R., Berger, T.K., Markram, H.: A synaptic organizing principle for cortical neuronal groups. PNAS 108, 5419–5424 (2011). https://doi.org/10.1073/pnas.1016051108

    Article  Google Scholar 

  15. Ali, F., Otchy, T.M., Pehlevan, C., Fantana, A.L., Burak, Y., Ölveczky, B.P.: The basal ganglia is necessary for learning spectral, but not temporal, features of birdsong. Neuron 80(2), 494–506 (2013). https://doi.org/10.1016/j.neuron.2013.07.049

    Article  Google Scholar 

  16. Pehlevan, C., Ali, F., Ölveczky, B.: Flexibility in motor timing constrains the topology and dynamics of pattern generator circuits. Nat. Commun. 9, 977 (2018). https://doi.org/10.1038/s41467-018-03261-5

    Article  Google Scholar 

  17. Glaze, C.M., Troye, T.W.: Temporal structure in zebra finch song: implications for motor coding. J. Neurosci. 26, 991–1005 (2006). https://doi.org/10.1523/JNEUROSCI.3387-05.2006

    Article  Google Scholar 

  18. Khona, M., Fiete, I.: Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 (2022). https://doi.org/10.1038/s41583-022-00642-0

    Article  Google Scholar 

  19. Vu, E., Mazurek, M., Kuo, Y.: Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934 (1994). https://doi.org/10.1523/JNEUROSCI.14-11-06924.1994

    Article  Google Scholar 

  20. Naie, K., Hahnloser, R.: Regulation of learned vocal behavior by an auditory motor cortical nucleus in juvenile zebra finches. J. Neurophysiol. 106, 291–300 (2011). https://doi.org/10.1152/jn.01035.2010

    Article  Google Scholar 

  21. Elmaleh, M., Kranz, D., Asensio, A., Moll, F., Long, M.: Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron 109, 3851–3861 (2021). https://doi.org/10.1016/j.neuron.2021.09.021

    Article  Google Scholar 

  22. Lynch, G., Okubo, T., Hanuschkin, A., Hahnloser, R., Fee, M.: Rhythmic continuous-time coding in the songbird analog of vocal motor cortex. Neuron 90, 877–892 (2016). https://doi.org/10.1016/j.neuron.2016.04.021

    Article  Google Scholar 

  23. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  24. Fehér, O., Wang, H., Saar, S., Mitra, P.P., Tchernichovski, O.: De novo establishment of wild-type song culture in the zebra finch. Nature 459, 564–568 (2009). https://doi.org/10.1038/nature07994

    Article  Google Scholar 

  25. Araki, M., Bandi, M.M., Yazaki-Sugiyama, Y.: Mind the gap: neural coding of species identity in birdsong prosody. Science 354, 1282–1287 (2016). https://doi.org/10.1126/science.aah6799

    Article  Google Scholar 

  26. Prather, J., Peters, S., Nowicki, S., Mooney, R.: Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451, 305–310 (2008). https://doi.org/10.1038/nature06492

    Article  Google Scholar 

  27. Prather, J., Okanoya, K., Bolhuis, J.: Brains for birds and babies: neural parallels between birdsong and speech acquisition. Neurosci. Biobehav. Rev. 81, 225–237 (2017). https://doi.org/10.1016/j.neubiorev.2016.12.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fjola Hyseni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hyseni, F., Rougier, N.P., Leblois, A. (2023). Attractor Dynamics Drive Flexible Timing in Birdsong. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics