Skip to main content

Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14261))

Included in the following conference series:

  • 1039 Accesses

Abstract

The goal of unsupervised domain adaptive semantic segmentation (UDA-SS) is to learn a model using annotated data from the source domain and generate accurate dense predictions for the unlabeled target domain. UDA methods based on Transformer utilize self-attention mechanism to learn features within source and target domains. However, in the presence of significant distribution shift between the two domains, the noisy pseudo-labels could hinder the model’s adaptation to the target domain. In this work, we proposed to incorporate self-attention and cross-domain attention to learn domain-invariant features. Specifically, we design a weight-sharing multi-branch cross-domain Transformer, where the cross-domain branch is used to align domains at the feature level with the aid of cross-domain attention. Moreover, we introduce an adaptive thresholding strategy for pseudo-label selection, which dynamically adjusts the proportion of pseudo-labels that are used in training based on the model’s adaptation status. Our approach guarantees the reliability of the pseudo labels while allowing more target domain samples to contribute to model training. Extensive experiments show that our proposed method consistently outperforms the baseline and achieves competitive results on GTA5\(\rightarrow \)Cityscapes, Synthia\(\rightarrow \)Cityscapes, and Cityscapes\(\rightarrow \)ACDC benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting semantic segmentation. In: CVPR, pp. 15379–15389 (2021)

    Google Scholar 

  2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  3. Hoffman, J., Tzeng, E., Park, T., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998 (2018)

    Google Scholar 

  4. Hoyer, L., Dai, D., Van Gool, L.: DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: CVPR, pp. 9924–9935 (2022)

    Google Scholar 

  5. Hoyer, L., Dai, D., Van Gool, L.: HRDA: context-aware high-resolution domain-adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 372–391. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_22

    Chapter  Google Scholar 

  6. Jiang, Z., et al.: Prototypical contrast adaptation for domain adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13694, pp. 36–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4_3

    Chapter  Google Scholar 

  7. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)

  8. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: CVPR, pp. 6936–6945 (2019)

    Google Scholar 

  9. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  10. Luo, Y., Zheng, L., Guan, T., et al.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: CVPR, pp. 2507–2516 (2019)

    Google Scholar 

  11. Sakaridis, C., Dai, D., Van Gool, L.: Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. PAMI 44(6), 3139–3153 (2020)

    Article  Google Scholar 

  12. Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: WACV, pp. 1379–1389 (2021)

    Google Scholar 

  13. Tsai, Y.H., Hung, W.C., Schulter, S., et al.: Learning to adapt structured output space for semantic segmentation. In: CVPR, pp. 7472–7481 (2018)

    Google Scholar 

  14. Tsai, Y.H., Sohn, K., Schulter, S., et al.: Domain adaptation for structured output via discriminative patch representations. In: CVPR, pp. 1456–1465 (2019)

    Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  16. Vu, T.H., Jain, H., Bucher, M., et al.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  17. Wang, Q., Dai, D., Hoyer, L., Van Gool, L., et al.: Domain adaptive semantic segmentation with self-supervised depth estimation. In: ICCV, pp. 8515–8525 (2021)

    Google Scholar 

  18. Wang, Y., Chen, H., Heng, Q., et al.: FreeMatch: self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246 (2022)

  19. Wu, X., Wu, Z., Guo, H., et al.: DANNet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation. In: CVPR, pp. 15769–15778 (2021)

    Google Scholar 

  20. Xie, E., Wang, W., Yu, Z., et al.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS, vol. 34, pp. 12077–12090 (2021)

    Google Scholar 

  21. Xu, T., Chen, W., Wang, P., et al.: CDTrans: cross-domain transformer for unsupervised domain adaptation. arXiv preprint arXiv:2109.06165 (2021)

  22. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: CVPR, pp. 4085–4095 (2020)

    Google Scholar 

  23. Zhang, P., Zhang, B., Zhang, T., et al.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: CVPR, pp. 12414–12424 (2021)

    Google Scholar 

  24. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV, pp. 289–305 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (62276242), National Aviation Science Foundation (2022Z071078001), CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-016B, CAAIXSJLJJ-2022-001A), Anhui Province Key Research and Development Program (202104a05-020007), USTC-IAT Application Sci. & Tech. Achievement Cultivation Program (JL06521001Y), Sci. & Tech. Innovation Special Zone (20-163-14-LZ-001-004-01). Fang was supported by the Guangxi Science and Technology Base and Talent Project under Grant (2020AC19253).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Jun or Fang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Wang, L., Jun, Y., Gao, F. (2023). Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics