Abstract
The goal of unsupervised domain adaptive semantic segmentation (UDA-SS) is to learn a model using annotated data from the source domain and generate accurate dense predictions for the unlabeled target domain. UDA methods based on Transformer utilize self-attention mechanism to learn features within source and target domains. However, in the presence of significant distribution shift between the two domains, the noisy pseudo-labels could hinder the model’s adaptation to the target domain. In this work, we proposed to incorporate self-attention and cross-domain attention to learn domain-invariant features. Specifically, we design a weight-sharing multi-branch cross-domain Transformer, where the cross-domain branch is used to align domains at the feature level with the aid of cross-domain attention. Moreover, we introduce an adaptive thresholding strategy for pseudo-label selection, which dynamically adjusts the proportion of pseudo-labels that are used in training based on the model’s adaptation status. Our approach guarantees the reliability of the pseudo labels while allowing more target domain samples to contribute to model training. Extensive experiments show that our proposed method consistently outperforms the baseline and achieves competitive results on GTA5\(\rightarrow \)Cityscapes, Synthia\(\rightarrow \)Cityscapes, and Cityscapes\(\rightarrow \)ACDC benchmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting semantic segmentation. In: CVPR, pp. 15379–15389 (2021)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. In: ICLR (2021)
Hoffman, J., Tzeng, E., Park, T., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998 (2018)
Hoyer, L., Dai, D., Van Gool, L.: DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: CVPR, pp. 9924–9935 (2022)
Hoyer, L., Dai, D., Van Gool, L.: HRDA: context-aware high-resolution domain-adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 372–391. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_22
Jiang, Z., et al.: Prototypical contrast adaptation for domain adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13694, pp. 36–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4_3
Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)
Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: CVPR, pp. 6936–6945 (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Luo, Y., Zheng, L., Guan, T., et al.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: CVPR, pp. 2507–2516 (2019)
Sakaridis, C., Dai, D., Van Gool, L.: Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. PAMI 44(6), 3139–3153 (2020)
Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: WACV, pp. 1379–1389 (2021)
Tsai, Y.H., Hung, W.C., Schulter, S., et al.: Learning to adapt structured output space for semantic segmentation. In: CVPR, pp. 7472–7481 (2018)
Tsai, Y.H., Sohn, K., Schulter, S., et al.: Domain adaptation for structured output via discriminative patch representations. In: CVPR, pp. 1456–1465 (2019)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
Vu, T.H., Jain, H., Bucher, M., et al.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)
Wang, Q., Dai, D., Hoyer, L., Van Gool, L., et al.: Domain adaptive semantic segmentation with self-supervised depth estimation. In: ICCV, pp. 8515–8525 (2021)
Wang, Y., Chen, H., Heng, Q., et al.: FreeMatch: self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246 (2022)
Wu, X., Wu, Z., Guo, H., et al.: DANNet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation. In: CVPR, pp. 15769–15778 (2021)
Xie, E., Wang, W., Yu, Z., et al.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS, vol. 34, pp. 12077–12090 (2021)
Xu, T., Chen, W., Wang, P., et al.: CDTrans: cross-domain transformer for unsupervised domain adaptation. arXiv preprint arXiv:2109.06165 (2021)
Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: CVPR, pp. 4085–4095 (2020)
Zhang, P., Zhang, B., Zhang, T., et al.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: CVPR, pp. 12414–12424 (2021)
Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV, pp. 289–305 (2018)
Acknowledgements
This work was supported by the Natural Science Foundation of China (62276242), National Aviation Science Foundation (2022Z071078001), CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-016B, CAAIXSJLJJ-2022-001A), Anhui Province Key Research and Development Program (202104a05-020007), USTC-IAT Application Sci. & Tech. Achievement Cultivation Program (JL06521001Y), Sci. & Tech. Innovation Special Zone (20-163-14-LZ-001-004-01). Fang was supported by the Guangxi Science and Technology Base and Talent Project under Grant (2020AC19253).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Q., Wang, L., Jun, Y., Gao, F. (2023). Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-44198-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44197-4
Online ISBN: 978-3-031-44198-1
eBook Packages: Computer ScienceComputer Science (R0)