Skip to main content

Delineation of Prostate Boundary from Medical Images via a Mathematical Formula-Based Hybrid Algorithm

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14261))

Included in the following conference series:

  • 629 Accesses

Abstract

The precise extraction of the contour of prostate on transrectal ultrasound (TRUS) is crucial for the diagnosis and treatment of prostate tumor. Due to the relatively low signal-to-noise ratio (SNR) of TRUS images and the potential of imaging artifacts, accurate contouring of the prostate from TRUS images has been a challenging task. This paper proposes four strategies to achieve higher precision of segmentation on TRUS images. Firstly, a modified principal curve-based algorithm is used to obtain the data sequence, with a small amount of prior point information adopted for coarse initialization. Secondly, an evolution neural network is devised to find an optimal network. Thirdly, a fractional-order-based network is trained with the data sequence as input, resulting in a decreased model error and increased precision. Finally, the parameters of a fractional-order-based neural network were utilized to construct an interpretable and smooth mathematical equation of the organ border. The Dice similarity coefficient (DSC), Jaccard similarity coefficient (OMG), and accuracy (ACC) of model outputs against ground-truths were 95.9 ± 2.3%, 94.9 ± 2.4%, and 95.3 ± 2.2%, respectively. The results of our method outperform several popular state-of-the-art segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zong, J., Qiu, T., Li, W., Guo, D.: Automatic ultrasound image segmentation based on local entropy and active contour model. Comput. Math. Appl. 78, 929–943 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Panigrahi, L., Verma, K., Singh, B.K.: Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst. Appl. 115, 486–498 (2019)

    Article  Google Scholar 

  3. Huang, K., Zhang, Y., Cheng, H.D., Xing, P., Zhang, B.: Semantic segmentation of breast ultrasound image with fuzzy deep learning network and breast anatomy constraints. Neurocomputing. 450, 319–335 (2021)

    Article  Google Scholar 

  4. Jaouen, V., et al.: Prostate volume segmentation in TRUS using hybrid edge-Bhattacharyya active surfaces. IEEE Trans. Biomed. Eng. 66, 920–933 (2018)

    Google Scholar 

  5. Lu, X., et al.: Ultrasonographic pathological grading of prostate cancer using automatic region-based Gleason grading network. Comput. Med. Imaging Graph., 102125 (2022)

    Google Scholar 

  6. Beitone, C., Troccaz, J.: Multi-eXpert fusion: an ensemble learning framework to segment 3D TRUS prostate images. Med. Phys. 49, 5138–5148 (2022)

    Article  Google Scholar 

  7. van Sloun, R.J.G., et al.: Deep learning for real-time, automatic, and scanner-adapted prostate (Zone) segmentation of transrectal ultrasound, for example, magnetic resonance imaging–transrectal ultrasound fusion prostate biopsy, European urology. Focus. 7, 78–85 (2021)

    Google Scholar 

  8. Guo, Y., Şengür, A., Akbulut, Y., Shipley, A.: An effective color image segmentation approach using neutrosophic adaptive mean shift clustering. Measurement 119, 28–40 (2018)

    Article  Google Scholar 

  9. Wu, R., Wang, B., Xu, A.: Functional data clustering using principal curve methods. Commun. Stat., 1–20 (2021)

    Google Scholar 

  10. Ge, Y., et al.: Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans. Cybern. 48, 2166–2180 (2018)

    Article  Google Scholar 

  11. Chen, M.-R., Chen, B.-P., Zeng, G.-Q., Lu, K.-D., Chu, P.: An adaptive fractional-order BP neural network based on extremal optimization for handwritten digits recognition. Neurocomputing. 391, 260–272 (2020)

    Article  Google Scholar 

  12. Biau, G., Fischer, A.: Parameter selection for principal curves. IEEE Trans. Inf. Theory 58, 1924–1939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Y., et al.: Deep attentive features for prostate segmentation in 3D transrectal ultrasound. IEEE Trans. Med. Imaging 38, 2768–2778 (2019)

    Article  Google Scholar 

  14. Moraes, E.C.C., Ferreira, D.D., Vitor, G.B., Barbosa, B.H.G.: Data clustering based on principal curves. Adv. Data Anal. Classif. 14, 77–96 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17, 790–799 (1995)

    Article  Google Scholar 

  16. Guo, Y., Şengür, A.: A novel image segmentation algorithm based on neutrosophic similarity clustering. Appl. Soft Comput. 25, 391–398 (2014)

    Article  Google Scholar 

  17. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84, 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kégl, B., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22, 281–297 (2000)

    Article  Google Scholar 

  19. Celebi, M.E., Celiker, F., Kingravi, H.A.: On Euclidean norm approximations. Pattern Recogn. 44, 278–283 (2011)

    Article  MATH  Google Scholar 

  20. Zeng, Y.-R., Zeng, Y., Choi, B., Wang, L.: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network. Energy 127, 381–396 (2017)

    Article  Google Scholar 

  21. Leema, N., Nehemiah, H.K., Kannan, A.: Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016)

    Article  Google Scholar 

  22. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

    Article  Google Scholar 

  23. Xiao, M., Zheng, W.X., Jiang, G., Cao, J.: Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative. IEEE Trans. Neural Netw. Learn. Syst. 26, 3201–3214 (2015)

    Article  MathSciNet  Google Scholar 

  24. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) From Natural to Artificial Neural Computation, pp. 195–201. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  25. Hara, K., Saito, D., Shouno, H.: Analysis of function of rectified linear unit used in deep learning. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

    Google Scholar 

  26. Peng, T., Wu, Y., Qin, J., Wu, Q.J., Cai, J.: H-ProSeg: hybrid ultrasound prostate segmentation based on explainability-guided mathematical model. Comput. Methods Programs Biomed. 219, 106752 (2022)

    Article  Google Scholar 

  27. Peng, T., et al.: H-ProMed: ultrasound image segmentation based on the evolutionary neural network and an improved principal curve. Pattern Recogn. 131, 108890 (2022)

    Article  Google Scholar 

  28. Niu, S., Chen, Q., de Sisternes, L., Ji, Z., Zhou, Z., Rubin, D.L.: Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recogn. 61, 104–119 (2017)

    Article  Google Scholar 

  29. Liu, Y., He, C., Gao, P., Wu, Y., Ren, Z.: A binary level set variational model with L1 data term for image segmentation. Sig. Process. 155, 193–201 (2019)

    Article  Google Scholar 

  30. Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Sig. Process. 23, 1390–1400 (2013)

    Article  MathSciNet  Google Scholar 

  31. Gao, Y., Zhou, M., Metaxas, D.: UTNet: a hybrid transformer architecture for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 61–71 (2021)

    Google Scholar 

  32. Peng, T., Gu, Y., Ye, Z., Cheng, X., Wang, J.: A-LugSeg: automatic and explainability-guided multi-site lung detection in chest X-ray images. Expert Syst. Appl. 198, 116873 (2022)

    Article  Google Scholar 

  33. Peng, T., Tang, C., Wu, Y., Cai, J.: H-SegMed: a hybrid method for prostate segmentation in TRUS images via improved closed principal curve and improved enhanced machine learning. Int. J. Comput. Vis. 130, 1896–1919 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Peng , Jing Cai or Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, T. et al. (2023). Delineation of Prostate Boundary from Medical Images via a Mathematical Formula-Based Hybrid Algorithm. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics