Skip to main content

Exploring the Role of Feedback Inhibition for the Robustness Against Corruptions on Event-Based Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

In event-based vision, visual information is encoded by sequential events in space and time, similar to the human visual system, where the retina emits spikes. Thus, spiking neural networks are to be preferred for processing event-based input streams. As for classical deep learning networks, spiking neural networks must be robust against different corruption or perturbations in the input data. However, corruption in event-based data has received little attention so far. According to previous studies, biologically motivated neural networks, consisting of lateral inhibition to implement a competition mechanism between the neurons, show an increase in the robustness against loss of information of input data. We here analyze the influence of inhibitory feedback on the robustness against four different types of corruption on an event-based data set. We demonstrate how a 1 : 1 ratio between feed-forward excitation and feedback inhibition increases the robustness against the loss of events, as well as against additional noisy events. Interestingly, our results show that strong feedback inhibition is a disadvantage if events in the input stream are shifted in space or in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/hamkerlab/Larisch2023_EventBasedSNN.git.

References

  1. Akhtar, N., Mian, A., Kardan, N., Shah, M.: Advances in adversarial attacks and defenses in computer vision: a survey. IEEE Access 9, 155161–155196 (2021). https://doi.org/10.1109/ACCESS.2021.3127960

    Article  Google Scholar 

  2. Büchel, J., Lenz, G., Hu, Y., Sheik, S., Sorbaro, M.: Adversarial attacks on spiking convolutional neural networks for event-based vision. Front. Neurosci. 16 (2022). https://doi.org/10.3389/fnins.2022.1068193

  3. Clopath, C., Büsing, L., Vasilaki, E., Gerstner, W.: Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13(3), 344–352 (2010). https://doi.org/10.1038/nn.2479

    Article  Google Scholar 

  4. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(01), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413

  5. Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nat. Rev. Neurosci. 14(5), 350–363 (2013). https://doi.org/10.1038/nrn3476

    Article  Google Scholar 

  6. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  7. Iyer, L.R., Basu, A.: Unsupervised learning of event-based image recordings using spike-timing-dependent plasticity. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1840–1846 (2017). https://doi.org/10.1109/IJCNN.2017.7966074

  8. Kermani Kolankeh, A., Teichmann, M., Hamker, F.H.: Competition improves robustness against loss of information. Front. Comput. Neurosci. 9 (2015). https://doi.org/10.3389/fncom.2015.00035

  9. Kim, E., Rego, J., Watkins, Y., Kenyon, G.T.: Modeling biological immunity to adversarial examples. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4665–4674 (2020). https://doi.org/10.1109/CVPR42600.2020.00472

  10. Larisch, R., Teichmann, M., Hamker, F.H.: A neural spiking approach compared to deep feedforward networks on stepwise pixel erasement. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 253–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_25

    Chapter  Google Scholar 

  11. Larisch, R., Gönner, L., Teichmann, M., Hamker, F.H.: Sensory coding and contrast invariance emerge from the control of plastic inhibition over emergent selectivity. PLOS Comput. Biol. 17(11), 1–37 (2021). https://doi.org/10.1371/journal.pcbi.1009566

  12. Lee, C., Sarwar, S.S., Panda, P., Srinivasan, G., Roy, K.: Enabling spike-based backpropagation for training deep neural network architectures. Front. Neurosci. 14 (2020). https://doi.org/10.3389/fnins.2020.00119

  13. Lenz, G., et al.: Tonic: event-based datasets and transformations, July 2021. https://doi.org/10.5281/zenodo.5079802, Documentation available under https://tonic.readthedocs.io

  14. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C.: Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5(10), 793–807 (2004). https://doi.org/10.1038/nrn1519

    Article  Google Scholar 

  15. Miconi, T., McKinstry, J.L., Edelman, G.M.: Spontaneous emergence of fast attractor dynamics in a model of developing primary visual cortex. Nat. Commun. 7(1), 13208 (2016). https://doi.org/10.1038/ncomms13208

    Article  Google Scholar 

  16. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4), 335–347 (2008). https://doi.org/10.1007/s00422-008-0264-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Nunes, J.D., Carvalho, M., Carneiro, D., Cardoso, J.S.: Spiking neural networks: a survey. IEEE Access 10, 60738–60764 (2022). https://doi.org/10.1109/ACCESS.2022.3179968

    Article  Google Scholar 

  18. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

    Article  Google Scholar 

  19. Patiño-Saucedo, A., Rostro-González, H., Serrano-Gotarredona, T., Linares-Barranco, B.: Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the spinnaker neuromorphic platform. Neural Netw. 121, 319–328 (2020). https://doi.org/10.1016/j.neunet.2019.09.008

    Article  Google Scholar 

  20. Patiño-Saucedo, A., Rostro-González, H., Serrano-Gotarredona, T., Linares-Barranco, B.: Liquid state machine on spinnaker for spatio-temporal classification tasks. Front. Neurosci. 16 (2022). https://doi.org/10.3389/fnins.2022.819063

  21. Spoerer, C.J., McClure, P., Kriegeskorte, N.: Recurrent convolutional neural networks: a better model of biological object recognition. Front. Psychol. 8 (2017). https://doi.org/10.3389/fpsyg.2017.01551

  22. Teichmann, M., Larisch, R., Hamker, F.H.: Performance of biologically grounded models of the early visual system on standard object recognition tasks. Neural Netw. 144, 210–228 (2021). https://doi.org/10.1016/j.neunet.2021.08.009

    Article  Google Scholar 

  23. Vitay, J., Dinkelbach, H., Hamker, F.: ANNarchy: a code generation approach to neural simulations on parallel hardware. Front. Neuroinform. 9 (2015). https://doi.org/10.3389/fninf.2015.00019

  24. Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., Gerstner, W.: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334(6062), 1569–1573 (2011). https://doi.org/10.1126/science.1211095

    Article  Google Scholar 

  25. Zhang, H., Chen, H., Song, Z., Boning, D., Dhillon, I., Hsieh, C.J.: The limitations of adversarial training and the blind-spot attack. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HylTBhA5tQ

Download references

Acknowledgements

This research has been funded by the Saxony State Ministry of Science and Art (SMWK3-7304/35/3-2021/4819) research initiative “Instant Teaming between Humans and Production Systems”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Hamker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larisch, R., Berger, L., Hamker, F.H. (2023). Exploring the Role of Feedback Inhibition for the Robustness Against Corruptions on Event-Based Data. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics