Skip to main content

Adaptive Embedding and Distribution Re-margin for Long-Tail Recognition

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14261))

Included in the following conference series:

  • 650 Accesses

Abstract

Visual recognition methods assume models will be evaluated on the same class distribution as training data, but real-world data is often heavily class-imbalanced. To address this, the essential idea is to provide discriminative fitting abilities for classes with different sample sizes, i.e., the model achieves better generalization on less frequent classes, while maintaining high classification ability on the recurring classes. In this work, we propose to unify representation learning and classification learning with robust margin adjustment, which enforces a suitable margin in logit space and regularizes the distribution of embeddings. This procedure reduces representation bias in the feature space and reduces classification bias in the logit space at the same time. We further augment the under-represented tail classes on the feature level via re-balanced sampling from the robust prototype, calibrated with the knowledge from well-represented head classes and adaptive embedding uncertainty estimation. We conduct extensive experiments on a common long-tailed benchmark CIFAR100-LT. Experimental results demonstrate the advantage of the proposed AMDRG for the long-tailed recognition problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, D., Zhu, X., Huang, X., Guo, J., Lei, Z.: Domain balancing: face recognition on long-tailed domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5671–5679 (2020)

    Google Scholar 

  2. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  4. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  5. Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41

    Chapter  Google Scholar 

  6. Cui, J., Zhong, Z., Liu, S., Yu, B., Jia, J.: Parametric contrastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 715–724 (2021)

    Google Scholar 

  7. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  8. Deng, Z., Liu, H., Wang, Y., Wang, C., Yu, Z., Sun, X.: PML: progressive margin loss for long-tailed age classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10503–10512 (2021)

    Google Scholar 

  9. Feng, C., Zhong, Y., Huang, W.: Exploring classification equilibrium in long-tailed object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3417–3426 (2021)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)

    Google Scholar 

  13. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  MATH  Google Scholar 

  14. Jitkrittum, W., Menon, A.K., Rawat, A.S., Kumar, S.: ELM: embedding and logit margins for long-tail learning. arXiv preprint arXiv:2204.13208 (2022)

  15. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  16. Khan, S., Hayat, M., Zamir, S.W., Shen, J., Shao, L.: Striking the right balance with uncertainty. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 103–112 (2019)

    Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2008)

    Google Scholar 

  19. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  20. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)

  21. Oh, Y., Kim, D.J., Kweon, I.S.: Distribution-aware semantics-oriented pseudo-label for imbalanced semi-supervised learning. arXiv preprint arXiv:2106.05682 (2021)

  22. Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. In: Advances in Neural Information Processing Systems, vol. 33, pp. 4175–4186 (2020)

    Google Scholar 

  23. Samuel, D., Atzmon, Y., Chechik, G.: From generalized zero-shot learning to long-tail with class descriptors. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 286–295 (2021)

    Google Scholar 

  24. Samuel, D., Chechik, G.: Distributional robustness loss for long-tail learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9495–9504 (2021)

    Google Scholar 

  25. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)

    Article  Google Scholar 

  26. Wang, J., Lukasiewicz, T., Hu, X., Cai, J., Xu, Z.: RSG: a simple but effective module for learning imbalanced datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3784–3793 (2021)

    Google Scholar 

  27. Wang, P., Han, K., Wei, X.S., Zhang, L., Wang, L.: Contrastive learning based hybrid networks for long-tailed image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 943–952 (2021)

    Google Scholar 

  28. Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv:2010.01809 (2020)

  29. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. Wu, T., Liu, Z., Huang, Q., Wang, Y., Lin, D.: Adversarial robustness under long-tailed distribution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8659–8668 (2021)

    Google Scholar 

  31. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  32. Ye, H.J., Chen, H.Y., Zhan, D.C., Chao, W.L.: Identifying and compensating for feature deviation in imbalanced deep learning. arXiv preprint arXiv:2001.01385 (2020)

  33. Zhang, S., Li, Z., Yan, S., He, X., Sun, J.: Distribution alignment: a unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2361–2370 (2021)

    Google Scholar 

  34. Zhang, Y., Hooi, B., Hong, L., Feng, J.: Test-agnostic long-tailed recognition by test-time aggregating diverse experts with self-supervision. arXiv preprint arXiv:2107.09249 (2021)

  35. Zhang, Y., et al.: Online adaptive asymmetric active learning for budgeted imbalanced data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2768–2777 (2018)

    Google Scholar 

  36. Zhang, Y., et al.: Online adaptive asymmetric active learning with limited budgets. IEEE Trans. Knowl. Data Eng. 33(6), 2680–2692 (2019)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z., Xiang, X.: Long-tailed classification with gradual balanced loss and adaptive feature generation. arXiv preprint arXiv:2203.00452 (2022)

  38. Zhang, Z., Pfister, T.: Learning fast sample re-weighting without reward data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 725–734 (2021)

    Google Scholar 

  39. Zhao, P., Zhang, Y., Wu, M., Hoi, S.C., Tan, M., Huang, J.: Adaptive cost-sensitive online classification. IEEE Trans. Knowl. Data Eng. 31(2), 214–228 (2018)

    Article  Google Scholar 

  40. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by NSFC (U19B2035) and Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, Y., Chen, B., Feng, Z., Yan, J. (2023). Adaptive Embedding and Distribution Re-margin for Long-Tail Recognition. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics