Abstract
One of the main problems with automatic text summarization is the lack of a “gold standard" for summary quality evaluation. ROUGE [9] is the most widely used evaluation metric for summary quality. However, its evaluation merely concentrates on reference summary and overlap features of sentences rather than focusing on more critical semantic features. Some other exiting methods have issues with improper noise handling and high cost. To solve these problems, we propose a lightweight reference-less summary quality evaluation method (SE-tiny), which evaluates the summary from two aspects: the summary’s self-quality and the degree of matching the features of the summary with the key features of the source text. Then, we optimize computational efficiency and space cost. Compared with existing methods, SE-tiny improves the quality of evaluation and reduces the cost. Besides, our method does not rely on reference summaries and can be generalized to evaluation on summarization datasets. For the goal of reproducibility, we make the SE-tiny project’s code and models available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, P., Wu, F., Wang, T., Ding, W.: A semantic qa-based approach for text summarization evaluation. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI 2018), the 30th innovative Applications of Artificial Intelligence (IAAI 2018), and the 8thAAAI Symposium on Educational Advances in Artificial Intelligence (EAAI 2018), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 4800–4807. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16115
Clark, E., Celikyilmaz, A., Smith, N.A.: Sentence mover’s similarity: automatic evaluation for multi-sentence texts. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 2–7 July - 2 August 2019, Volume 1: Long Papers, pp. 2748–2760. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1264
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423
Gao, Y., Zhao, W., Eger, S.: SUPERT: towards new frontiers in unsupervised evaluation metrics for multi-document summarization. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 1347–1354. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.124
Grusky, M., Naaman, M., Artzi, Y.: Newsroom: a dataset of 1.3 million summaries with diverse extractive strategies. In: Walker, M.A., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, 1–6 June 2018, Volume 1 (Long Papers), pp. 708–719. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-1065
Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, pp. 7–12, 2015. Montreal, Quebec, Canada, pp. 1693–1701 (Dec 2015), https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
Kryscinski, W., McCann, B., Xiong, C., Socher, R.: Evaluating the factual consistency of abstractive text summarization. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 9332–9346. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.750
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 7871–7880. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.703, https://doi.org/10.18653/v1/2020.acl-main.703
Lin, C., Hovy, E.H.: Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Hearst, M.A., Ostendorf, M. (eds.) Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, Edmonton, Canada, 27 May - 1 June 2003. The Association for Computational Linguistics (2003). https://aclanthology.org/N03-1020/
Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019, pp. 3728–3738. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1387
Liu, Y., Liu, P.: Simcls: A simple framework for contrastive learning of abstractive summarization. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, 1–6 August 2021, pp. 1065–1072. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-short.135
Louis, A., Nenkova, A.: Automatically evaluating content selection in summarization without human models. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6–7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 306–314. ACL (2009), https://aclanthology.org/D09-1032/
Ng, J., Abrecht, V.: Better summarization evaluation with word embeddings for ROUGE. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton, Y. (eds.) Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, 17–21 September 2015, pp. 1925–1930. The Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/d15-1222
Rebuffel, C., et al.: Data-questeval: A referenceless metric for data-to-text semantic evaluation. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7–11 November 2021, pp. 8029–8036. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.633
Scialom, T., et al.: Questeval: summarization asks for fact-based evaluation. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7–11 November 2021, pp. 6594–6604. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.529
Scialom, T., Lamprier, S., Piwowarski, B., Staiano, J.: Answers unite! unsupervised metrics for reinforced summarization models. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019, pp. 3244–3254. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1320
ShafieiBavani, E., Ebrahimi, M., Wong, R.K., Chen, F.: A graph-theoretic summary evaluation for rouge. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October - 4 November 2018, pp. 762–767. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1085
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 (December), pp. 4–9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017). https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
Wu, H., Ma, T., Wu, L., Manyumwa, T., Ji, S.: Unsupervised reference-free summary quality evaluation via contrastive learning. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 3612–3621. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.294
Xenouleas, S., Malakasiotis, P., Apidianaki, M., Androutsopoulos, I.: Sumqe: a bert-based summary quality estimation model. CoRR abs/ arXiv: 1909.00578 (2019)
Xu, X., Dusek, O., Li, J., Rieser, V., Konstas, I.: Fact-based content weighting for evaluating abstractive summarisation. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 5071–5081. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.455
Zhang*, T., Kishore*, V., Wu*, F., Weinberger, K.Q., Artzi, Y.: Bertscore: evaluating text generation with bert. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=SkeHuCVFDr
Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019, pp. 563–578. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1053
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zang, S., Zhang, C., Lin, J., Chen, X., Zhang, S. (2023). Lightweight Reference-Less Summary Quality Evaluation via Key Feature Extraction. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-44198-1_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44197-4
Online ISBN: 978-3-031-44198-1
eBook Packages: Computer ScienceComputer Science (R0)