Skip to main content

Spatially Invariant and Frequency-Aware CycleGAN for Unsupervised MR-to-CT Synthesis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14262))

Included in the following conference series:

  • 709 Accesses

Abstract

Synthesis of computed tomography (CT) images from magnetic resonance (MR) images plays an important role in radiotherapy treatment planning. CycleGANs have achieved promising performance in unsupervised MR-to-CT synthesis. However, the inter-modality gap between the two modalities and the loss of high-frequency information in the synthetic CT images are still not well addressed. In this paper, we propose a spatially invariant and frequency-aware CycleGAN (SF-CycleGAN) to improve the performance of unsupervised MR-to-CT synthesis. Specifically, we introduce a translation-invariant generator to generate CT from MR images, while maintaining the invariance of spatial feature during translation for those positions having similar characteristics. Furthermore, we define a frequency-consistent loss to promote the consistency of the frequency between real and synthesized images and adaptively guide the model to pay more attention to synthesizing the harder-frequency (e.g., higher-frequency) parts. Intensive results in unpaired brain MR-to-CT image synthesis demonstrate that our method provides both quantitatively and qualitatively superior performance as compared to the baseline (CycleGAN) and other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L., et al.: MRI-based treatment planning for radiotherapy dosimetric verification for prostate IMRT. Int. J.. Radiat. Oncol. * Biol.* Phys. 60(2), 636–647 (2004)

    Google Scholar 

  2. Khoo, V., Joon, D.: New developments in MRI for target volume delineation in radiotherapy. Br. J. Radiol. 79(special_issue_1), S2–S15 (2006)

    Google Scholar 

  3. Wang, T., et al.: A review on medical imaging synthesis using deep learning and its clinical applications. J. Appl. Clin. Med. Phys. 22(1), 11–36 (2021)

    Article  Google Scholar 

  4. Guerreiro, F., et al.: Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning. Physica Med. 35, 7–17 (2017)

    Article  Google Scholar 

  5. Xu, R., et al.: SGDA: towards 3D universal pulmonary nodule detection via slice grouped domain attention. IEEE/ACM Trans. Comput. Biol. Bioinform. (2023)

    Google Scholar 

  6. Xu, R., Luo, Y., Du, B., Kuang, K., Yang, J.: LSSANet: a long short slice-aware network for pulmonary nodule detection. In: Wang, L., et al. (eds.) MICCAI 2022. Lecture Notes in Computer Science, vol. 13431, pp. 664–674. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_63

    Chapter  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  9. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  10. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

    Chapter  Google Scholar 

  11. Hiasa, Y., et al.: Cross-modality image synthesis from unpaired data using CycleGAN. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 31–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_4

    Chapter  Google Scholar 

  12. Yang, H., et al.: Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE Trans. Med. Imaging 39(12), 4249–4261 (2020)

    Article  MathSciNet  Google Scholar 

  13. Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Article  Google Scholar 

  14. Shi, Z., Mettes, P., Zheng, G., Snoek, C.: Frequency-supervised MR-to-CT image synthesis. In: Engelhardt, S., et al. (eds.) DGM4MICCAI/DALI -2021. LNCS, vol. 13003, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88210-5_1

    Chapter  Google Scholar 

  15. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv preprint: arXiv:1511.05440 (2015)

  16. Xu, Z.J., Zhou, H.: Deep frequency principle towards understanding why deeper learning is faster. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10541–10550 (2021)

    Google Scholar 

  17. Chen, J., Wang, X., Guo, Z., Zhang, X., Sun, J.: Dynamic region-aware convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8064–8073 (2021)

    Google Scholar 

  18. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13919–13929 (2021)

    Google Scholar 

  19. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint: arXiv:1802.05957 (2018)

  20. Han, X.: MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 44(4), 1408–1419 (2017)

    Article  Google Scholar 

  21. Cusumano, D., et al.: A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother. Oncol. 153, 205–212 (2020)

    Article  Google Scholar 

  22. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  23. Porter, E., et al.: Gamma knife MR/CT/RTSTRUCT sets with hippocampal contours. Cancer Imaging Archive (2022)

    Google Scholar 

  24. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  25. Tang, H., Liu, H., Xu, D., Torr, P.H., Sebe, N.: AttentionGAN: unpaired image-to-image translation using attention-guided generative adversarial networks. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  26. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  27. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2427–2436 (2019)

    Google Scholar 

  28. Han, J., Shoeiby, M., Petersson, L., Armin, M.A.: Dual contrastive learning for unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 746–755 (2021)

    Google Scholar 

  29. Guo, J., Li, J., Fu, H., Gong, M., Zhang, K., Tao, D.: Alleviating semantics distortion in unsupervised low-level image-to-image translation via structure consistency constraint. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18249–18259 (2022)

    Google Scholar 

Download references

Acknowledgements.

This work is supported by the Science and Technology Innovation Cultivation Foundation of Zhongnan Hospital of Wuhan University (ZNPY2019095), the Medical Science and Technology Innovation Platform Project of Zhongnan Hospital of Wuhan University (PTXM2022033), the National Natural Science Foundation of China (No.62262026), the project of Jiangxi Education Department (No.GJJ211111), and the Fundamental Research Funds for the Central Universities (No. 2042023kf1033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, S., Zhang, J., Hu, W., Luo, Y., Zhou, X. (2023). Spatially Invariant and Frequency-Aware CycleGAN for Unsupervised MR-to-CT Synthesis. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14262. Springer, Cham. https://doi.org/10.1007/978-3-031-44201-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44201-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44200-1

  • Online ISBN: 978-3-031-44201-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics