Skip to main content

TCS-LipNet: Temporal & Channel & Spatial Attention-Based Lip Reading Network

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14262))

Included in the following conference series:

  • 975 Accesses

Abstract

Lip-reading is the process of translating input lip-movement image sequences into text sequences, which is a task that requires both temporal and spatial information to be considered, and feature extraction is difficult. In this regard, this paper proposes a new lip reading model, TCS-LipNet, which innovatively proposes the temporal channel space attention mechanism module TCSAM, and compared with the channel space attention mechanism, TCS increases the association of channel space features in the temporal dimension and improves the performance of the model. TCS-LipNet uses the TCSAM-based ResNet18 network as the front-end module to enhance the extraction of visual features, and DC-TCN (Densely Connected Temporal Convolutional Networks) as the back-end module to address the temporal correlation of sequences. The experimental data show that TCS-LipNet achieves 92.2% accuracy on LRW, which is the highest accuracy rate currently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martinez, B., Ma, P., Petridis, S., Pantic, M.: Lipreading using temporal convolutional networks, pp. 6319–6323 (2020)

    Google Scholar 

  2. Ma, P., Wang, Y., Petridis, S., Shen, J., Pantic, M.: Training strategies for improved lip-reading. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8472–8476. IEEE (2022)

    Google Scholar 

  3. Feng, D., Yang, S., Shan, S., Chen, X.: Learn an effective lip reading model without pains. arXiv preprint arXiv:2011.07557 (2020)

  4. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  6. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Xu, K. Li, D., Cassimatis, N., Wang, X.: LCANet: end-to-end lipreading with cascaded attention-CTC (2018)

    Google Scholar 

  11. Yang, S., Zhang, Y., Feng, D. Yang, M., Chen, X.: LRW-1000: a naturally-distributed large-scale benchmark for lip reading in the wild. In: 2019 14th IEEE International Conference on Automatic Face Gesture Recognition (FG 2019) (2019)

    Google Scholar 

  12. Zhao, Y., Xu, R., Song, M.: A cascade sequence-to-sequence model for Chinese mandarin lip reading. ACM (2019)

    Google Scholar 

  13. Zhao, Y., Xu, R., Wang, X., Hou, P., Tang, H., Song, M.: Hearing lips: improving lip reading by distilling speech recognizers (2019)

    Google Scholar 

  14. Petridis, S., Stafylakis, T., Ma, P., Tzimiropoulos, G., Pantic, M.: Audio-visual speech recognition with a hybrid CTC/attention architecture. IEEE (2018)

    Google Scholar 

  15. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  16. Assael, Y.M., Shillingford, B., Whiteson, S., Freitas, N.D.: LipNet: end-to-end sentence-level lipreading (2016)

    Google Scholar 

  17. Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  18. Shillingford, B., et al.: Large-scale visual speech recognition (2018)

    Google Scholar 

  19. Chung, J.S., Senior, A., Vinyals, O., Zisserman, A.: Lip reading sentences in the wild. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  20. Stafylakis, T., Tzimiropoulos, G.: Deep word embeddings for visual speech recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4974–4978. IEEE (2018)

    Google Scholar 

  21. Jha, A., Namboodiri, V.P., Jawahar, C.: Word spotting in silent lip videos. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 150–159. IEEE (2018)

    Google Scholar 

  22. Zhang, X., Cheng, F., Wang, S.: Spatio-temporal fusion based convolutional sequence learning for lip reading. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 713–722 (2019)

    Google Scholar 

  23. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Supplementary material for ‘ECA-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13–19IEEE, Seattle (2020)

    Google Scholar 

  24. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  25. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  26. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  27. Lecun, Y., Bottou, L.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  28. Chung, J., et al.: Empirical evaluation of gated recurrent neural networks on sequence modeling. Eprint Arxiv (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Li, W., Cheng, Z., Liang, X., Zhang, Q. (2023). TCS-LipNet: Temporal & Channel & Spatial Attention-Based Lip Reading Network. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14262. Springer, Cham. https://doi.org/10.1007/978-3-031-44201-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44201-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44200-1

  • Online ISBN: 978-3-031-44201-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics