Abstract
This paper presents a novel approach to efficient neural network verification through the use of adversarial attacks and symbolic interval propagation. The proposed method leverages low-cost adversarial attacks to quickly obtain a rough estimate of the first set of bounds, and then utilizes symbolic interval propagation to compute tighter bounds. We demonstrate the effectiveness of our proposed method on the popular MNIST dataset, which contains hand-written digit images. The results show that the proposed method achieves state-of-the-art verification accuracy with significantly reduced computational cost, making it a promising approach for practical neural network verification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the Gurobi solver to tackle the MILP problem.
- 2.
https://www.gurobi.com/resources/chapter-1-why-mixed-integer-programming-mip/.
References
Alparslan, Y., Alparslan, K., Keim-Shenk, J., Khade, S., Greenstadt, R.: Adversarial attacks on convolutional neural networks in facial recognition domain. arXiv preprint arXiv:2001.11137 (2020)
Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. Math. Program. 183(1–2), 3–39 (2020)
Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_25
Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of ReLU-based neural networks via dependency analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3291–3299 (2020)
Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(2020) (2020)
Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view of piecewise linear neural network verification. Adv. Neural Inf. Process. Syst. 31 (2018)
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Gopinath, D., Pasareanu, C.S., Wang, K., Zhang, M., Khurshid, S.: Symbolic execution for attribution and attack synthesis in neural networks. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 282–283. IEEE (2019)
Hernandez, C., Espf, J., Nakayama, K., Fernandez, M.: Interval arithmetic backpropagation. In: Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), vol. 1, pp. 375–378. IEEE (1993)
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)
Lin, W., et al.: Robustness verification of classification deep neural networks via linear programming. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11418–11427 (2019)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 372–387. IEEE (2016)
Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)
Szegedy, C., et al.: Intriguing properties of neural networks. corr abs/1312.6199, arXiv preprint arXiv:1312.6199 (2013)
Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: Advances in neural information processing systems, vol. 31 (2018)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: 27th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 18), pp. 1599–1614 (2018)
Wang, S., Su, Z.: Metamorphic testing for object detection systems. arXiv preprint arXiv:1912.12162 (2019)
Wardat, M., Le, W., Rajan, H.: Deeplocalize: fault localization for deep neural networks. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 251–262. IEEE (2021)
Weng, L., et al.: Towards fast computation of certified robustness for ReLU networks. In: International Conference on Machine Learning, pp. 5276–5285. PMLR (2018)
Yang, P., et al.: Enhancing robustness verification for deep neural networks via symbolic propagation. Formal Aspects Comput. 33(3), 407–435 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Patil, M.S., Främling, K. (2023). Improving Neural Network Verification Efficiency Through Perturbation Refinement. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14254. Springer, Cham. https://doi.org/10.1007/978-3-031-44207-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-44207-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44206-3
Online ISBN: 978-3-031-44207-0
eBook Packages: Computer ScienceComputer Science (R0)