Skip to main content

Improving Neural Network Verification Efficiency Through Perturbation Refinement

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14254))

Included in the following conference series:

  • 1607 Accesses

Abstract

This paper presents a novel approach to efficient neural network verification through the use of adversarial attacks and symbolic interval propagation. The proposed method leverages low-cost adversarial attacks to quickly obtain a rough estimate of the first set of bounds, and then utilizes symbolic interval propagation to compute tighter bounds. We demonstrate the effectiveness of our proposed method on the popular MNIST dataset, which contains hand-written digit images. The results show that the proposed method achieves state-of-the-art verification accuracy with significantly reduced computational cost, making it a promising approach for practical neural network verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the Gurobi solver to tackle the MILP problem.

  2. 2.

    https://www.gurobi.com/resources/chapter-1-why-mixed-integer-programming-mip/.

References

  1. Alparslan, Y., Alparslan, K., Keim-Shenk, J., Khade, S., Greenstadt, R.: Adversarial attacks on convolutional neural networks in facial recognition domain. arXiv preprint arXiv:2001.11137 (2020)

  2. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. Math. Program. 183(1–2), 3–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_25

    Chapter  Google Scholar 

  4. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of ReLU-based neural networks via dependency analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3291–3299 (2020)

    Google Scholar 

  5. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(2020) (2020)

    Google Scholar 

  6. Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view of piecewise linear neural network verification. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  7. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

    Chapter  MATH  Google Scholar 

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  10. Gopinath, D., Pasareanu, C.S., Wang, K., Zhang, M., Khurshid, S.: Symbolic execution for attribution and attack synthesis in neural networks. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 282–283. IEEE (2019)

    Google Scholar 

  11. Hernandez, C., Espf, J., Nakayama, K., Fernandez, M.: Interval arithmetic backpropagation. In: Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), vol. 1, pp. 375–378. IEEE (1993)

    Google Scholar 

  12. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  13. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  14. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)

    Google Scholar 

  15. Lin, W., et al.: Robustness verification of classification deep neural networks via linear programming. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11418–11427 (2019)

    Google Scholar 

  16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 372–387. IEEE (2016)

    Google Scholar 

  18. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

    Article  Google Scholar 

  19. Szegedy, C., et al.: Intriguing properties of neural networks. corr abs/1312.6199, arXiv preprint arXiv:1312.6199 (2013)

  20. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

  21. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: Advances in neural information processing systems, vol. 31 (2018)

    Google Scholar 

  22. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: 27th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 18), pp. 1599–1614 (2018)

    Google Scholar 

  23. Wang, S., Su, Z.: Metamorphic testing for object detection systems. arXiv preprint arXiv:1912.12162 (2019)

  24. Wardat, M., Le, W., Rajan, H.: Deeplocalize: fault localization for deep neural networks. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 251–262. IEEE (2021)

    Google Scholar 

  25. Weng, L., et al.: Towards fast computation of certified robustness for ReLU networks. In: International Conference on Machine Learning, pp. 5276–5285. PMLR (2018)

    Google Scholar 

  26. Yang, P., et al.: Enhancing robustness verification for deep neural networks via symbolic propagation. Formal Aspects Comput. 33(3), 407–435 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minal Suresh Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patil, M.S., Främling, K. (2023). Improving Neural Network Verification Efficiency Through Perturbation Refinement. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14254. Springer, Cham. https://doi.org/10.1007/978-3-031-44207-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44207-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44206-3

  • Online ISBN: 978-3-031-44207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics