Skip to main content

ASP Loss: Adaptive Sample-Level Prioritizing Loss for Mass Segmentation on Whole Mammography Images

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Alarming statistics on the mortality rate for breast cancer are a clear indicator of the significance of computer vision tasks related to cancer identification. In this study, we focus on mass segmentation, which is a crucial task for cancer identification as it preserves critical properties of the mass, such as shape and size, vital for identification tasks. While achieving promising results, existing approaches are mostly hindered by pixel class imbalance and various mass sizes that are inherent properties of masses in mammography images. We propose to alleviate this limitation on segmentation methods via a novel modification of the common hybrid loss, which is a weighted sum of the cross entropy and dice loss. The proposed loss, termed Adaptive Sample-Level Prioritizing (ASP) loss, leverages the higher-level information presented in the segmentation mask for customizing the loss for every sample, to prioritize the contribution of each loss term accordingly. As one of the variations of U-Net, AU-Net is selected as the baseline approach for the evaluation of the proposed loss. The ASP loss could be integrated with other existing mass segmentation approaches to enhance their performance by providing them with the ability to address the problems associated with the pixel class imbalance and diverse mass sizes specific to the domain of breast mass segmentation. We tested our method on two publicly available datasets, INbreast and CBIS-DDSM. The results of our experiments show a significant boost in the performance of the baseline method while outperforming state-of-the-art mass segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA: Can. J. Clin. 72(1), 7–33 (2022)

    Google Scholar 

  2. Batchu, S., Liu, F., Amireh, A., Waller, J., Umair, M.: A review of applications of machine learning in mammography and future challenges. Oncology 99(8), 483–490 (2021)

    Article  Google Scholar 

  3. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Google Scholar 

  4. Nyström, L., Andersson, I., Bjurstam, N., Frisell, J., Nordenskjöld, B., Rutqvist, L.E.: Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 359(9310), 909–919 (2002)

    Article  Google Scholar 

  5. Malof, J.M., Mazurowski, M.A., Tourassi, G.D.: The effect of class imbalance on case selection for case-based classifiers: an empirical study in the context of medical decision support. Neural Netw. 25, 141–145 (2012)

    Article  Google Scholar 

  6. Sun, H., et al.: AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys. Med. Biol. 65(5), 055005 (2020)

    Article  Google Scholar 

  7. Xu, C., Qi, Y., Wang, Y., Lou, M., Pi, J., Ma, Y.: ARF-net: an adaptive receptive field network for breast mass segmentation in whole mammograms and ultrasound images. Biomed. Sig. Process. Control 71, 103178 (2022)

    Article  Google Scholar 

  8. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  9. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)

    Article  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C., Elmaghraby, A.S.: Connected-UNets: a deep learning architecture for breast mass segmentation. NPJ Breast Cancer 7(1), 151 (2021)

    Article  Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  13. Hai, J., et al.: Fully convolutional densenet with multiscale context for automated breast tumor segmentation. J. Healthc. Eng. 2019 (2019). Hindawi

    Google Scholar 

  14. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  15. Li, S., Dong, M., Du, G., Mu, X.: Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access 7, 59037–59047 (2019)

    Article  Google Scholar 

  16. Chen, J., Chen, L., Wang, S., Chen, P.: A novel multi-scale adversarial networks for precise segmentation of x-ray breast mass. IEEE Access 8, 103772–103781 (2020)

    Article  Google Scholar 

  17. Rajalakshmi, N.R., Vidhyapriya, R., Elango, N., Ramesh, N.: Deeply supervised u-net for mass segmentation in digital mammograms. Int. J. Imaging Syst. Technol. 31(1), 59–71 (2021)

    Article  Google Scholar 

  18. Yi-de, M., Qing, L., Zhi-Bai, Q.: Automated image segmentation using improved PCNN model based on cross-entropy. In: Proceedings of International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 743–746. IEEE (2004)

    Google Scholar 

  19. Pihur, V., Datta, S., Datta, S.: Weighted rank aggregation of cluster validation measures: a monte carlo cross-entropy approach. Bioinformatics 23, 1607–1615 (2007)

    Article  Google Scholar 

  20. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  21. Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 95, 102026 (2022)

    Google Scholar 

  22. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  23. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  24. Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Aliniya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliniya, P., Nicolescu, M., Nicolescu, M., Bebis, G. (2023). ASP Loss: Adaptive Sample-Level Prioritizing Loss for Mass Segmentation on Whole Mammography Images. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14255. Springer, Cham. https://doi.org/10.1007/978-3-031-44210-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44210-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44209-4

  • Online ISBN: 978-3-031-44210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics