Skip to main content

Semantic and Frequency Representation Mining for Face Manipulation Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14256))

Included in the following conference series:

  • 1395 Accesses

Abstract

Face manipulation technologies pose a great threat to the current digital media. Although previous methods have achieved excellent detection performance, they tend to focus on specific artifacts and lead to overfitting. Erasing-based augmentations can alleviate this issue, but they still suffer from high randomness and fixed shapes. Therefore, we propose a novel face masking method named Landmarks Based Erasing (LBE), which exploits the geometric information of the face and forgery attention map to perform erasure, thereby forcing the network to mine discriminative features from other face regions. Furthermore, Wavelet Packet with Attention (WPA) mechanism module is designed to extract multi-level frequency features, providing a complementary perspective to LBE module. Finally, we employ a score fusion strategy to fuse two types of complementary feature information for forgery detection. Extensive experiments on three large public datasets demonstrate that our proposed method achieves state-of-the-art detection performance and exhibits good generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deepfakes (2018). www.github.com/deepfakes/faceswap

  2. FaceSwap (2018). www.github.com/MarekKowalski/FaceSwap/

  3. FaceApp (2019). www.faceapp.com/app

  4. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS) (2018)

    Google Scholar 

  5. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  6. Chen, Z., Yang, H.: Manipulated face detector: joint spatial and frequency domain attention network. arXiv preprint arXiv:2005.029581(2), 4 (2020)

  7. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  8. Dai, Y., Fei, J., Wang, H., Xia, Z.: Attentional local contrastive learning for face forgery detection. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) ICANN 2022, Part I. LNCS, vol. 13529, pp. 709–721. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15919-0_59

    Chapter  Google Scholar 

  9. Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.: On the detection of digital face manipulation (2019)

    Google Scholar 

  10. Das, S., Seferbekov, S., Datta, A., Islam, M., Amin, M., et al.: Towards solving the deepfake problem: an analysis on improving deepfake detection using dynamic face augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3776–3785 (2021)

    Google Scholar 

  11. Frank, J., Eisenhofer, T., Schnherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  14. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  15. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  17. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: FaceShifter: towards high fidelity and occlusion aware face swapping. arXiv preprint arXiv:1912.13457 (2019)

  18. Li, L., et al.: Face X-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001–5010 (2020)

    Google Scholar 

  19. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for deepfake forensics. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  20. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6

    Chapter  Google Scholar 

  21. Rssler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niener, M.: FaceForensics++: learning to detect manipulated facial images (2019)

    Google Scholar 

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  25. Wang, C., Deng, W.: Representative forgery mining for fake face detection (2021)

    Google Scholar 

  26. Wolter, M., Blanke, F., Heese, R., Garcke, J.: Wavelet-packets for deepfake image analysis and detection. Mach. Learn. 111, 1–33 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62001493), the Hunan Provincial Postgraduate Scientific Research Innovation Project (QL20220009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, J., Deng, J., Yin, X., Zhang, Z., Chen, H. (2023). Semantic and Frequency Representation Mining for Face Manipulation Detection. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics