Skip to main content

Molecular Structure-Based Double-Central Drug-Drug Interaction Prediction

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14257))

Included in the following conference series:

Abstract

Adverse Drug-Drug Interactions(DDI) occur with drug combinations and mainly cause mortality and morbidity. The identification of potential DDI is essential for medical health. Most of the existing methods rely heavily on manually engineered domain knowledge, therefore, lack generalization and are inefficient. Drugs with similar molecular structures have similar chemical properties. The molecular structures of drugs can be obtained easily and the reactions between drugs are reactions between two molecular structures. In this paper, we proposed an artificially intelligent DDI prediction model, Molecular Structure-based Double-Central Drug-Drug Interaction prediction(MSDC-DDI). MSDC-DDI utilizes a double-central encoder and a cross-dependent schema to generate the representations of the drugs. MSDC-DDI made effective and accurate predictions, which achieved up to more than 99% in DDI prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.rdkit.org/.

  2. 2.

    https://bitbucket.org/kaistsystemsbiology/deepddi/src/master/.

  3. 3.

    http://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.htm.

References

  1. Jia, J., Zhu, F., Ma, X., Cao, Z.W., Li, Y.X., Chen, Y.Z.: Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8(2), 111–128 (2009)

    Article  Google Scholar 

  2. Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. 115(18), E4304–E4311 (2018)

    Article  Google Scholar 

  3. Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B.: Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4(125), 125ra31–125ra31 (2012)

    Google Scholar 

  4. Whitebread, S., Hamon, J., Bojanic, D., Urban, L.: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10(21), 1421–1433 (2005)

    Article  Google Scholar 

  5. Vilar, S., Harpaz, R., Uriarte, E., Santana, L., Rabadan, R., Friedman, C.: Drug-drug interaction through molecular structure similarity analysis. J. Am. Med. Inform. Assoc. 19(6), 1066–1074 (2012)

    Article  Google Scholar 

  6. Vilar, S., et al.: Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat. Protoc. 9(9), 2147–2163 (2014)

    Article  Google Scholar 

  7. Gottlieb, A., Stein, G.Y., Oron, Y., Ruppin, E., Sharan, R.: INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol. Syst. Biol. 8(1), 592 (2012)

    Article  Google Scholar 

  8. Li, P., et al.: Large-scale exploration and analysis of drug combinations. Bioinformatics 31(12), 2007–2016 (2015)

    Article  Google Scholar 

  9. Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., Cheng, F.: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6(1), 1–18 (2020)

    Article  Google Scholar 

  10. Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W., Liu, S.: A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics 36(15), 4316–4322 (2020)

    Article  Google Scholar 

  11. Zhang, C., Lu, Y., Zang, T.: CNN-DDI: a learning-based method for predicting drug-drug interactions using convolution neural networks. BMC Bioinform. 23(1), 1–12 (2022)

    Google Scholar 

  12. Lin, S., et al.: MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Brief. Bioinform. 23(1), bbab421 (2022)

    Google Scholar 

  13. Wang, F., Lei, X., Liao, B., Wu, F.X.: Predicting drug-drug interactions by graph convolutional network with multi-kernel. Brief. Bioinform. 23(1), bbab511 (2022)

    Google Scholar 

  14. Celebi, R., Yasar, E., Uyar, H., Gumus, O., Dikenelli, O., Dumontier, M.: Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction using linked open data (2018)

    Google Scholar 

  15. Karim, M.R., Cochez, M., Jares, J.B., Uddin, M., Beyan, O., Decker, S.: Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 113–123 (2019)

    Google Scholar 

  16. Chen, Y., Ma, T., Yang, X., Wang, J., Song, B., Zeng, X.: MUFFIN: multi-scale feature fusion for drug-drug interaction prediction. Bioinformatics 37(17), 2651–2658 (2021)

    Article  Google Scholar 

  17. Yu, H., Dong, W., Shi, J.: RANEDDI: relation-aware network embedding for drug-drug interaction prediction. Inf. Sci. 582, 167–180 (2022)

    Article  Google Scholar 

  18. Feng, Y.H., Zhang, S.W., Shi, J.Y.: DPDDI: a deep predictor for drug-drug interactions. BMC Bioinform. 21(1), 1–15 (2020)

    Article  Google Scholar 

  19. Liu, Z., Wang, X.N., Yu, H., Shi, J.Y., Dong, W.M.: Predict multi-type drug-drug interactions in cold start scenario. BMC Bioinform. 23(1), 1–13 (2022)

    Article  Google Scholar 

  20. Yu, Y., Huang, K., Zhang, C., Glass, L.M., Sun, J., Xiao, C.: SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37(18), 2988–2995 (2021)

    Article  Google Scholar 

  21. Lin, X., Quan, Z., Wang, Z.J., Ma, T., Zeng, X.: KGNN: knowledge graph neural network for drug-drug interaction prediction. In: IJCAI, vol. 380, pp. 2739–2745 (2020)

    Google Scholar 

  22. Hong, Y., Luo, P., Jin, S., Liu, X.: LaGAT: link-aware graph attention network for drug-drug interaction prediction. Bioinformatics (2022)

    Google Scholar 

  23. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  24. Nyamabo, A.K., Yu, H., Shi, J.Y.: SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Brief. Bioinform. 22(6), bbab133 (2021)

    Google Scholar 

  25. Xu, N., Wang, P., Chen, L., Tao, J., Zhao, J.: MR-GNN: multi-resolution and dual graph neural network for predicting structured entity interactions. arXiv preprint arXiv:1905.09558 (2019)

  26. Wang, H., Lian, D., Zhang, Y., Qin, L., Lin, X.: GoGNN: graph of graphs neural network for predicting structured entity interactions. arXiv preprint arXiv:2005.05537 (2020)

  27. Nyamabo, A.K., Yu, H., Liu, Z., Shi, J.Y.: Drug-drug interaction prediction with learnable size-adaptive molecular substructures. Brief. Bioinform. 23(1), bbab441 (2022)

    Google Scholar 

  28. Zhu, X., Shen, Y., Lu, W.: Molecular substructure-aware network for drug-drug interaction prediction. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4757–4761 (2022)

    Google Scholar 

  29. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  30. Ma, H., et al.: Cross-dependent graph neural networks for molecular property prediction. Bioinformatics 38(7), 2003–2009 (2022)

    Article  Google Scholar 

  31. Weininger, D.: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Google Scholar 

  32. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  33. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2018)

    Google Scholar 

  34. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  35. Wang, Y., Min, Y., Chen, X., Wu, J.: Multi-view graph contrastive representation learning for drug-drug interaction prediction. In: Proceedings of the Web Conference 2021, pp. 2921–2933 (2021)

    Google Scholar 

  36. Deac, A., Huang, Y.H., Veličković, P., Liò, P., Tang, J.: Drug-drug adverse effect prediction with graph co-attention. arXiv preprint arXiv:1905.00534 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baitai, C., Peng, J., Zhang, Y., Liu, Y. (2023). Molecular Structure-Based Double-Central Drug-Drug Interaction Prediction. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14257. Springer, Cham. https://doi.org/10.1007/978-3-031-44216-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44216-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44215-5

  • Online ISBN: 978-3-031-44216-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics