Skip to main content

Temporal Sequences of EEG Covariance Matrices for Automated Sleep Stage Scoring with Attention Mechanisms

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2023)

Abstract

Electroencephalographic (EEG) data is commonly used in sleep medicine. It consists of a number of cerebral electrical signals measured from various brain locations, subdivided into segments that must be manually scored to reflect their sleep stage. These past few years, multiple implementations aimed at an automation of this scoring process have been attempted, with promising results, although they are not yet accurate enough with respect to each sleep stage to see clinical use. Our approach relies on the information contained within the covariations between multiple EEG signals. This is done through temporal sequences of covariance matrices, analyzed through attention mechanisms at both the intra- and inter-epoch levels. Evaluation performed on a standard dataset using an improved methodological framework show that our approach obtains balanced results over all classes, this balancing being characterized by a better MF1 score than the State of the Art.

This work has been co-funded by the Normandy Region and the French National Research Agency (ANR) through a HAISCoDe Ph.D. grant. It was granted access to the HPC resources of IDRIS under the allocation 2022-AD010613618 made by GENCI, and to the computing resources of CRIANN (Normandy, France).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

    Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  3. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

  4. Berry, R.B., et al.: AASM scoring manual updates for 2017 (version 2.4) (2017)

    Google Scholar 

  5. Bouchard, M., Lina, J.M., Gaudreault, P.O., Dubé, J., Gosselin, N., Carrier, J.: EEG connectivity across sleep cycles and age. Sleep 43(3) (2019)

    Google Scholar 

  6. Eickhoff, S., Müller, V.: Functional connectivity. In: Toga, A.W. (ed.) Brain Mapping, pp. 187–201. Academic Press, Waltham (2015)

    Chapter  Google Scholar 

  7. Jia, Z., et al.: Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1977–1986 (2021)

    Article  Google Scholar 

  8. Jia, Z., et al.: Graphsleepnet: adaptive spatial-temporal graph convolutional networks for sleep stage classification. In: IJCAI, pp. 1324–1330 (2020)

    Google Scholar 

  9. O’reilly, C., Gosselin, N., Carrier, J., Nielsen, T.: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research. J. Sleep Res. 23(6), 628–635 (2014)

    Article  Google Scholar 

  10. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. Int. J. Comput. Vision 66(1), 41–66 (2006)

    Article  MATH  Google Scholar 

  11. Phan, H., Chén, O.Y., Tran, M.C., Koch, P., Mertins, A., De Vos, M.: Xsleepnet: multi-view sequential model for automatic sleep staging. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5903–5915 (2022)

    Google Scholar 

  12. Phan, H., et al.: L-seqsleepnet: whole-cycle long sequence modelling for automatic sleep staging (2023)

    Google Scholar 

  13. Phan, H., Mikkelsen, K.: Automatic sleep staging of EEG signals: recent development, challenges, and future directions. Physiol. Meas. 43(4), 04TR01 (2022). https://doi.org/10.1088/1361-6579/ac6049

  14. Phan, H., Mikkelsen, K., Chén, O.Y., Koch, P., Mertins, A., De Vos, M.: Sleeptransformer: automatic sleep staging with interpretability and uncertainty quantification. IEEE Trans. Biomed. Eng. 69(8), 2456–2467 (2022)

    Article  Google Scholar 

  15. Seo, H., Back, S., Lee, S., Park, D., Kim, T., Lee, K.: Intra- and inter-epoch temporal context network (IITNET) using sub-epoch features for automatic sleep scoring on raw single-channel eeg. Biomed. Signal Process. Control 61, 102037 (2020)

    Article  Google Scholar 

  16. Supratak, A., Dong, H., Wu, C., Guo, Y.: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 1998–2008 (2017)

    Article  Google Scholar 

  17. Supratak, A., Guo, Y.: Tinysleepnet: an efficient deep learning model for sleep stage scoring based on raw single-channel EEG. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 641–644 (2020)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  19. Yger, F., Berar, M., Lotte, F.: Riemannian approaches in brain-computer interfaces: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1753–1762 (2017)

    Article  Google Scholar 

  20. Yger, F., Sugiyama, M.: Supervised logeuclidean metric learning for symmetric positive definite matrices (2015)

    Google Scholar 

  21. Zhu, T., Luo, W., Yu, F.: Convolution-and attention-based neural network for automated sleep stage classification. Int. J. Environ. Res. Public Health 17(11), 4152 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Seraphim .

Editor information

Editors and Affiliations

Appendix

Appendix

The hyperparameters corresponding to the best version of our model are:

Side vectors: PSD; \(\alpha \): 99.53; intra-epoch encoder: 5 sublayers, 15 attention heads, fully connected components of size 1024, dropout of \(6.2 \times 10^{-5}\); intra-epoch encoder: 6 sublayers, 5 attention heads, fully connected components of size 256, dropout of \(8.1 \times 10^{-3}\); final fully connected layers: of size 2048, dropout of \(1.4 \times 10^{-3}\); learning rate (\(\lambda \)): \(4.9 \times 10^{-5}\), \(\gamma _\lambda \) at 0.94; weight decay at \(1.76 \times 10^{-6}\).

Many thanks to Huy Phan [11,12,13,14] for answering all our questions.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seraphim, M., Dequidt, P., Lechervy, A., Yger, F., Brun, L., Etard, O. (2023). Temporal Sequences of EEG Covariance Matrices for Automated Sleep Stage Scoring with Attention Mechanisms. In: Tsapatsoulis, N., et al. Computer Analysis of Images and Patterns. CAIP 2023. Lecture Notes in Computer Science, vol 14185. Springer, Cham. https://doi.org/10.1007/978-3-031-44240-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44240-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44239-1

  • Online ISBN: 978-3-031-44240-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics