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Abstract. Constrained Horn Clauses (CHCs) are often used in auto-
mated program verification. Thus, techniques for (dis-)proving satisfi-
ability of CHCs are a very active field of research. On the other hand,
acceleration techniques for computing formulas that characterize the
N -fold closure of loops have successfully been used for static program
analysis. We show how to use acceleration to avoid repeated deriva-
tions with recursive CHCs in resolution proofs, which reduces the length
of the proofs drastically. This idea gives rise to a novel calculus for
(dis)proving satisfiability of CHCs, called Acceleration Driven Clause
Learning (ADCL). We implemented this new calculus in our tool LoAT
and evaluate it empirically in comparison to other state-of-the-art tools.

1 Introduction

Constrained Horn Clauses (CHCs) are often used for expressing verification
conditions in automated program verification. Examples for tools based on CHCs
include Korn [19] and SeaHorn [29] for verifying C and C++ programs, JayHorn for
Java programs [35], HornDroid for Android apps [12], RustHorn for Rust programs
[42], and SmartACE [49] and SolCMC [3] for Solidity. Consequently, techniques for
(dis-)proving satisfiability of CHCs (CHC-SAT) are a very active field of research,
resulting in powerful tools like Spacer [36], Eldarica [34], FreqHorn [20], Golem [7],
Ultimate [17], and RInGEN [37].

On the other hand, loop acceleration techniques have been used successfully
for static program analyses during the last years, resulting in tools like Flata [9,26]
and LoAT [24]. Essentially, such techniques compute quantifier-free first-order
formulas that characterize the N -fold closure of the transition relation of loops
without branching in their body. Thus, acceleration techniques can be used when
generating verification conditions in order to replace such loops with the closure
of their transition relation.

In this paper, we apply acceleration techniques to CHC-SAT, where we restrict
ourselves to linear CHCs, i.e., clauses that contain at most one positive and
one negative literal with uninterpreted predicates. As our main interest lies in
proving unsatisfiability of CHCs, our approach does not rely on abstractions,
in contrast to most other techniques. Instead, we use acceleration to cut off
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φf

Inv(0, 5000) φr

Inv(1, 5000) φr....
Inv(5000, 5000) φr

Inv(5001, 5001) φr....
Inv(10000, 10000) φq

⊥

(a) Original Resolution Proof

φf

Inv(0, 5000) φ+
1

Inv(5000, 5000) φ+
2

Inv(10000, 10000) φq

⊥

(b) Accelerated Resolution Proof

Fig. 1: Original and Accelerated Resolution Proof

repeated derivations with recursive CHCs while exploring the state space via
resolution. In this way, the number of resolution steps that are required to reach
a counterexample can be reduced drastically, as new CHCs that are “learned” via
acceleration can simulate arbitrarily many “ordinary” resolution steps at once.

Example 1. Consider the following set of CHCs Φ over the theory of linear integer
arithmetic (LIA) with a fact φf , a rule φr, and a query φq, where ⊤ and ⊥ stand
for true and false:1

⊤ =⇒ Inv(0, 5000) (φf)

Inv(X1, X2) ∧
((X1 < 5000 ∧ Y2 = X2) ∨ (X1 ≥ 5000 ∧ Y2 = X2 + 1))

=⇒ Inv(X1 + 1, Y2) (φr)

Inv(10000, 10000) =⇒ ⊥ (φq)

Its unsatisfiability can be proven via resolution and arithmetic simplification as
shown in Fig. 1a. The proof requires 10001 resolution steps. Using acceleration
techniques, we can derive the following two new CHCs from Φ:

Inv(X1, X2) ∧N > 0 ∧X1 +N < 5001 =⇒ Inv(X1 +N,X2) (φ+
1 )

Inv(X1, X2) ∧N > 0 ∧X1 ≥ 5000 =⇒ Inv(X1 +N,X2 +N) (φ+
2 )

The first CHC φ+
1 covers arbitrarily many subsequent resolution steps with φr

where X1 < 5000. Similarly, the second CHC φ+
2 covers arbitrarily many steps

where X1 ≥ 5000. Now we can prove unsatisfiability of Φ with just 3 resolution
steps, as shown in Fig. 1b.

This idea gives rise to a novel calculus for CHC-SAT, called Acceleration
Driven Clause Learning (ADCL). ADCL is refutationally complete and can also
prove satisfiability, but it does not necessarily terminate.

1 chc-LIA-Lin 052.smt2 from the benchmarks of the CHC Competition ’22 [14]
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So far, our implementation in our tool LoAT is restricted to proving unsatisfi-
ability. In program verification (which is one of the most important applications
of CHC-SAT), satisfiability usually corresponds to safety, i.e., if an error state
is reachable in the original program, then the CHCs derived from the program
are unsatisfiable. Hence, LoAT can be used to show reachability of error states in
program verification. The “witness” of reachability is a resolution proof ending
in a conditional empty clause ψ =⇒ ⊥ (where the condition ψ is a formula over
the signature of some background theory like LIA), together with a model for
ψ. Instantiating the variables in the proof according to the model yields a proof
on ground instances. Then this instantiated proof corresponds to a program run
that ends in an error state, i.e., a counterexample.

After introducing preliminaries in Sect. 2, we formalize ADCL in Sect. 3.
Next, we discuss how to implement ADCL efficiently in Sect. 4. In Sect. 5, we
discuss related work, and we show that our approach is highly competitive with
state-of-the-art CHC-SAT solvers by means of an empirical evaluation. All proofs
can be found in the appendix.

2 Preliminaries

We assume that the reader is familiar with basic concepts from many-sorted
first-order logic. Throughout this paper, Σ denotes a many-sorted first-order
signature that just contains predicates, i.e., we do not consider uninterpreted
functions. Moreover, V denotes a countably infinite set of variables and for each
entity e, V(e) denotes the variables occurring in e. We write x⃗ for sequences and
xi is the i

th element of x⃗. In the following, we introduce preliminaries regarding
Constrained Horn Clauses and acceleration techniques.

Constrained Horn Clauses are first-order formulas of the form

∀X⃗1, . . . , X⃗d, Y⃗ , Z⃗. F1(X⃗1) ∧ . . . ∧ Fd(X⃗d) ∧ ψ =⇒ G(Y⃗ ) or

∀X⃗1, . . . , X⃗d, Z⃗. F1(X⃗1) ∧ . . . ∧ Fd(X⃗d) ∧ ψ =⇒ ⊥

where X⃗1, . . . , X⃗d, Y⃗ , Z⃗ are pairwise disjoint vectors of pairwise different variables,
F1, . . . ,Fd,G ∈ Σ, ψ ∈ QF(A) is a quantifier-free first-order formula over the

many-sorted signature ΣA of some theory A, and V(ψ) ⊆ X⃗1 ∪ . . . ∪ X⃗d ∪ Y⃗ ∪ Z⃗.
We assume that A is a complete theory with equality and that Σ and ΣA are
disjoint, and we usually omit the leading universal quantifier, i.e., all variables in
CHCs are implicitly universally quantified.2 Moreover, w.l.o.g., we assume that

2 We assume that all arguments of predicates are variables. This is not a restriction,
as one can add equations to ψ to identify ΣA-terms with fresh variables. To ease the
presentation, we also use ΣA-terms as arguments of predicates in examples (e.g., in
Ex. 1 we wrote ⊤ =⇒ Inv(0, 5000) instead of Y1 = 0 ∧ Y2 = 5000 =⇒ Inv(Y1, Y2)).
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ψ is in negation normal form. In this paper, we restrict ourselves to linear CHCs.
Thus, we consider CHCs of the following form:

ψ =⇒ G(Y⃗ ) (fact)

F(X⃗) ∧ ψ =⇒ G(Y⃗ ) (rule)

F(X⃗) ∧ ψ =⇒ ⊥ (query)

ψ =⇒ ⊥ (conditional empty clause)

The premise and conclusion of a CHC is also called body and head, a CHC is
recursive if it is a rule where F = G, and it is conjunctive if ψ is a conjunction
of literals. Throughout this paper, φ and π always denote CHCs. The condition
of a CHC φ is cond(φ) := ψ. We write φ|ψ′ for the CHC that results from φ by
replacing cond(φ) with ψ′. Typically, the original set of CHCs does not contain
conditional empty clauses, but in our setting, such clauses result from resolution
proofs that start with a fact and end with a query. A conditional empty clause is
called a refutation if its condition is satisfiable. We also refer to sets of CHCs as
CHC problems, denoted Φ or Π.

We call σ an A-interpretation if it is a model of A whose carrier only contains
ground terms over ΣA, extended with interpretations for Σ and V. Given a
first-order formula η over Σ ∪ΣA, an A-interpretation σ is a model of η (written
σ |=A η) if it satisfies η. If such a model exists, then η is satisfiable. As usual,
|=A η means that η is valid (i.e., we have σ |=A η for all A-interpretations σ)
and η ≡A η′ means |=A η ⇐⇒ η′. For sets of formulas H, we define σ |=A H if
σ |=A

∧
η∈H η. The ground instances of a CHC η ∧ ψ =⇒ η′ are:

grnd(η ∧ ψ =⇒ η′) := {ησ =⇒ η′σ | σ |=A ψ},

where ησ abbreviates σ(η), i.e., it results from η by instantiating all variables
according to σ. Since A is complete (i.e., either |=A ψ or |=A ¬ψ holds for every
closed formula ψ over ΣA), A-interpretations σ only differ on Σ and V , and thus
we have σ |=A φ iff σ |=A grnd(φ).

In the following, we use “::” for the concatenation of sequences, where we
identify sequences of length 1 with their elements, i.e., we sometimes write x :: xs
instead of [x] :: xs or x :: y instead of [x, y]. As usual, mgu(s, t) is the most
general unifier of s and t. The following definition formalizes resolution (where
we disregard the underlying theory and just use ordinary syntactic unification).
If the corresponding literals of two clauses φ,φ′ do not unify, then we define
their resolvent to be ⊥ =⇒ ⊥, so that resolution is defined for pairs of arbitrary
CHCs. Note that in our setting, the mgu θ is always a variable renaming.

Definition 2 (Resolution). Let φ and φ′ be CHCs, where we rename the
variables in φ and φ′ such that they are disjoint. If

φ = (η ∧ ψ =⇒ F(x⃗)), φ′ = (F(y⃗) ∧ ψ′ =⇒ η′), and θ = mgu(F(x⃗),F(y⃗)),

then res(φ,φ′) := (η ∧ ψ ∧ ψ′ =⇒ η′)θ.

Otherwise, res(φ,φ′) := (⊥ =⇒ ⊥).

Here, η can also be ⊤ and η′ can also be ⊥. We lift res to non-empty sequences
of CHCs by defining

res([φ1, φ2] :: φ⃗) := res(res(φ1, φ2) :: φ⃗) and res(φ1) := φ1.
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We implicitly lift notations and terminology for CHCs to sequences of CHCs
via resolution. So for example, we have cond(φ⃗) := cond(res(φ⃗)) and grnd(φ⃗) :=
grnd(res(φ⃗)).

Example 3. Consider a variation Φ′ of the CHC problem Φ from Ex. 1 where φf

is replaced by
X1 ≤ 0 ∧X2 ≥ 5000 =⇒ Inv(X1, X2) (φ′

f)

To prove its unsatisfiability, one can consider the resolvent of the sequence
φ⃗ := [φ′

f , φ
+
1 , φ

+
2 , φq]:

res([φ′
f , φ

+
1 , φ

+
2 , φq])

= res([ψ =⇒ Inv(X1 +N,X2), φ
+
2 , φq])

= res([ψ ∧N ′ > 0 ∧X1+N ≥ 5000 =⇒ Inv(X1+N+N ′, X2+N
′), φq]) (†)

≡A res([X1 ≤ 0 ∧X2 ≥ 5000 ∧N ′ > 0 =⇒ Inv(5000 +N ′, X2 +N ′), φq]) (‡)
= (X1 ≤ 0 ∧X2 ≥ 5000 ∧N ′ > 0 ∧ 5000 +N ′ = X2 +N ′ = 10000 =⇒ ⊥)

Here, we have

ψ := cond([φ′
f , φ

+
1 ]) = X1 ≤ 0 ∧X2 ≥ 5000 ∧N > 0 ∧X1 +N < 5001.

In the step marked with (†), the variable N ′ results from renaming N in φ+
2 .

In the step marked with (‡), we simplified X1 + N to 5000 for readability, as
ψ ∧X1 +N ≥ 5000 implies X1 +N = 5000. If σ(X1) = 0 and σ(X2) = σ(N ′) =
5000, then σ |=A res(φ⃗) and thus res(φ⃗) is a refutation, so Φ is unsatisfiable. By
instantiating the variables in the proof according to σ (and setting N to 5000, as
we had X1 +N = 5000), we obtain an accelerated resolution proof on ground
instances that is analogous to Fig. 1b and serves as a “witness” of unsatisfiability,
i.e., a “counterexample” to Φ′.

Acceleration Techniques are used to compute the N -fold closure of the transition
relation of a loop in program analysis. In the context of CHCs, applying an
acceleration technique to a recursive CHC φ yields another CHC φ′ which, for any
instantiation of a dedicated fresh variable N ∈ V(φ′) with a positive integer, has
the same ground instances as res(φN ). Here, φN denotes the sequence consisting of
N repetitions of φ. In the following definition, we restrict ourselves to conjunctive
CHCs, since many existing acceleration techniques do not support disjunctions [8],
or have to resort to approximations in the presence of disjunctions [23].

Definition 4 (Acceleration). An acceleration technique is a function accel
that maps a recursive conjunctive CHC φ to a recursive conjunctive CHC such
that grnd(accel(φ)) =

⋃
n∈N≥1

grnd(φn).

Example 5. In the CHC problem from Ex. 1, φr entails

Inv(X1, X2) ∧X1 < 5000 =⇒ Inv(X1 + 1, X2).

From this CHC, an acceleration technique would compute φ+
1 .
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Note that most theories are not “closed under acceleration”. For example,
consider the left clause below, which only uses linear arithmetic.

F(X,Y ) =⇒ F(X + Y, Y ) F(X,Y ) ∧N > 0 =⇒ F(X +N · Y, Y )

Accelerating it yields the clause on the right, which is not expressible with linear
arithmetic due to the sub-expression N · Y . Moreover, if there is no sort for
integers in the background theory A, then an additional sort for the range of N
is required in the formula that results from applying accel. For that reason, we
consider many-sorted first-order logic and theories.

3 Acceleration Driven Clause Learning

In this section, we introduce our novel calculus ADCL for (dis)proving satisfiability
of CHC problems. In Sect. 3.1, we start with important concepts that ADCL is
based on. Then the ADCL calculus itself is presented in Sect. 3.2. Finally, in
Sect. 3.3 we investigate the main properties of ADCL.

3.1 Syntactic Implicants and Redundancy

Since ADCL relies on acceleration techniques, an important property of ADCL
is that it only applies resolution to conjunctive CHCs, even if the analyzed CHC
problem is not conjunctive. To obtain conjunctive CHCs from non-conjunctive
CHCs, we use syntactic implicants.

Definition 6 (Syntactic Implicant Projection). Let ψ ∈ QF(A) be in
negation normal form. We define:

sip(ψ, σ) :=
∧

{ℓ is a literal of ψ | σ |=A ℓ} if σ |=A ψ

sip(ψ) := {sip(ψ, σ) | σ |=A ψ}
sip(φ) := {φ|ψ | ψ ∈ sip(cond(φ))} for CHCs φ

sip(Φ) :=
⋃
φ∈Φ

sip(φ) for sets of CHCs Φ

Here, sip abbreviates syntactic implicant projection.

In contrast to the usual notion of implicants (which just requires that the
implicants entail ψ), syntactic implicants are restricted to literals from ψ to
ensure that sip(ψ) is finite. We call such implicants syntactic since Def. 6 does
not take the semantics of literals into account. For example, the formula ψ :=
(X > 0 ∧X > 1) contains the literals X > 0 and X > 1, and |=A X > 1 =⇒ ψ,
but (X > 1) /∈ sip(ψ) = {ψ}, because every model of X > 1 also satisfies X > 0.
It is easy to show that ψ ≡A

∨
sip(ψ), and thus we also have Φ ≡A sip(Φ).

Example 7. In the CHC problem of Ex. 1, we have

sip(cond(φr)) = {(X1 < 5000 ∧ Y2 = X2), (X1 ≥ 5000 ∧ Y2 = X2 + 1)}.
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Since sip(φ) is worst-case exponential in the size of cond(φ), we do not compute
it explicitly: When resolving with φ, we conjoin cond(φ) to the condition of the
resulting resolvent and search for a model σ. This ensures that we do not continue
with resolvents that have unsatisfiable conditions. Then we replace cond(φ) by
sip(cond(φ), σ) in the resolvent. This corresponds to a resolution step with a
conjunctive variant of φ whose condition is satisfied by σ. In other words, our
calculus constructs sip(cond(φ), σ) “on the fly” when resolving φ⃗ with φ, where
σ |=A cond(φ⃗ :: φ), see Sect. 4 for details. In this way, the exponential blowup
that results from constructing sip(φ) explicitly can often be avoided.

As ADCL learns new clauses via acceleration, it is important to prefer more
general (learned) clauses over more specific clauses in resolution proofs. To this
end, we use the following redundancy relation for CHCs.

Definition 8 (Redundancy Relation). For two CHCs φ and π, we say that
φ is (strictly) redundant w.r.t. π, denoted φ ⊑ π (φ ⊏ π), if grnd(φ) ⊆ grnd(π)
(grnd(φ) ⊂ grnd(π)). For a set of CHCs Π, we define φ ⊑ Π (φ ⊏ Π) if φ ⊑ π
(φ ⊏ π) for some π ∈ Π.

In the following, we assume that we have oracles for checking redundancy, for
satisfiability of QF(A)-formulas, and for acceleration. In practice, we have to
resort to incomplete techniques instead. In Sect. 4, we will explain how our
implementation takes that into account.

3.2 The ADCL Calculus

A state of ADCL consists of a CHC problem Π, containing the original CHCs
and all learned clauses that were constructed by acceleration, the trace [φi]

k
i=1,

representing a resolution proof, and a sequence [Bi]
k
i=0 of sets of blocking clauses.

Clauses φ ⊑ Bi must not be used for the (i+ 1)th resolution step. In this way,
blocking clauses prevent ADCL from visiting the same part of the search space
more than once. ADCL blocks a clause φ after proving that ⊥ (and thus unsat)
cannot be derived after adding φ to the current trace, or if the current trace
φ⃗ :: φ⃗′ ends with φ and there is another “more general” trace φ⃗ :: π⃗ such that
φ⃗′ ⊑ π⃗ and |φ⃗′| ≥ |π⃗|, where one of the two relations is strict. In the following, Φ
denotes the original CHC problem whose satisfiability is analyzed with ADCL.

Definition 9 (State). A state is a triple

(Π, [φi]
k
i=1, [Bi]

k
i=0)

where Π ⊇ Φ is a CHC problem, Bi ⊆ sip(Π) for each 0 ≤ i ≤ k, and [φi]
k
i=1 ∈

sip(Π)∗. The clauses in sip(Φ) are called original clauses and all clauses in
sip(Π) \ sip(Φ) are called learned clauses. A clause φ ⊑ Bk is blocked, and φ is
active if it is not blocked and cond([φi]

k
i=1 :: φ) is satisfiable.

Now we are ready to introduce our novel calculus.
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Definition 10 (ADCL). Let the “backtrack function” bt be defined as

bt(Π, [φi]
k
i=1, [B0, . . . , Bk]) := (Π, [φi]

k−1
i=1 , [B0, . . . , Bk−1 ∪ {φk}]).

Our calculus is defined by the following rules.

Φ⇝ (Φ, [], [∅]) (Init)

φ ∈ sip(Π) is active

(Π, φ⃗, B⃗)⇝ (Π, φ⃗ :: φ, B⃗ :: ∅)
(Step)

φ⃗⟲ is recursive |φ⃗⟲| = |B⃗⟲| accel(φ⃗⟲) = φ

(Π, φ⃗ :: φ⃗⟲, B⃗ :: B⃗⟲)⇝ (Π ∪ {φ}, φ⃗ :: φ, B⃗ :: {φ})
(Accelerate)

φ⃗′ ⊏ sip(Π) or φ⃗′ ⊑ sip(Π) ∧ |φ⃗′| > 1

s = (Π, φ⃗ :: φ⃗′, B⃗)⇝ bt(s)
(Covered)

all rules and queries from sip(Π) are inactive φ is not a query

s = (Π, φ⃗ :: φ, B⃗)⇝ bt(s)
(Backtrack)

φ⃗ is a refutation

(Π, φ⃗, B⃗)⇝ unsat
(Refute)

all facts and conditional empty clauses from sip(Π) are inactive

(Π, [], [B])⇝ sat
(Prove)

We write
I
⇝,

S
⇝, . . . to indicate that Init,Step, . . . was used for a⇝-step. All

derivations start with Init. Step adds an active CHC φ to the trace. Due to the
linearity of CHCs, we can restrict ourselves to proofs that start with a fact or a
conditional empty clause, but such a restriction is not needed for the correctness
of our calculus and thus not enforced.

As soon as φ⃗ has a recursive suffix φ⃗⟲ (i.e., a suffix φ⃗⟲ such that res(φ⃗⟲)
is recursive), Accelerate can be used. Then the suffix φ⃗⟲ is replaced by the

accelerated clause φ and the suffix B⃗⟲ of sets of blocked clauses that corresponds
to φ⃗⟲ is replaced by {φ}. The reason is that for learned clauses, we always have
res(φ,φ) ⊑ φ, and thus applying φ twice in a row is superfluous. So in this
way, clauses that were just learned are not used for resolution several times in
a row. As mentioned in Sect. 2, the condition of the learned clause may not
be expressible in the theory A. Thus, when Accelerate is applied, we may
implicitly switch to a richer theory A′ (e.g., from linear to non-linear arithmetic).

If a suffix φ⃗′ of the trace is redundant w.r.t. sip(Π), we can backtrack via
Covered, which removes the last element from φ⃗′ (but not the rest of φ⃗′,
since this sequence could now be continued in a different way) and blocks it,
such that we do not revisit the corresponding part of the search space. So
here the redundancy check allows us to use more general (learned) clauses, if
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available. Here, it is important that we do not backtrack if φ⃗′ is a single, weakly
redundant clause. Otherwise, Covered could always be applied after Step or
Accelerate and block the last clause from the trace. Thus, we might falsely
“prove” satisfiability.

If no further Step is possible since all CHCs are inactive, then we Backtrack
as well and block the last clause from φ⃗ to avoid performing the same Step
again.

If we started with a fact and the last CHC in φ⃗ is a query, then res(φ⃗) is a
refutation and Refute can be used to prove unsat.

Finally, if we arrive in a state where φ⃗ is empty and all facts and conditional
empty clauses are inactive, then Prove is applicable as we have exhausted the
entire search space without proving unsatisfiability, i.e., Φ is satisfiable. Note
that we always have |B⃗| = |φ⃗|+ 1, since we need one additional set of blocking
clauses to block facts. While B0 is initially empty (see Init), it can be populated
via Backtrack or Covered. So eventually, all facts may become blocked, such
that sat can be proven via Prove.

Example 11. Using our calculus, unsatisfiability of the CHC problem Φ in Ex. 1
can be proven as follows:

Φ
I
⇝ (Φ, [], [∅])

S
⇝ (Φ, [φf ], [∅,∅]) ⊤ =⇒ Inv(0, 5000)

S
⇝ (Φ, [φf , φr|ψ1 ], [∅,∅,∅]) Inv(0, 5000) =⇒ Inv(1, 5000)

A
⇝ (Π1, [φf , φ

+
1 ], [∅,∅, {φ

+
1 }]) Inv(0, 5000) =⇒ Inv(1, 5000)

S
⇝ (Π1, [φf , φ

+
1 , φr|ψ2

], [∅,∅, {φ+
1 , },∅]) Inv(5000, 5000) =⇒ Inv(5001, 5001)

A
⇝ (Π2, [φf , φ

+
1 , φ

+
2 ], [∅,∅, {φ

+
1 }, {φ

+
2 }]) Inv(5000, 5000) =⇒ Inv(5001, 5001)

S
⇝ (Π2, [φf , φ

+
1 , φ

+
2 , φq], [∅,∅, {φ+

1 }, {φ
+
2 },∅]) Inv(10000, 10000) =⇒ ⊥

R
⇝ unsat

Here, we have:

Π1 := Φ ∪ {φ+
1 } ψ1 := X1 < 5000 ∧ Y2 = X2

Π2 := Π1 ∪ {φ+
2 } ψ2 := X1 ≥ 5000 ∧ Y2 = X2 + 1

Beside the state of our calculus, we show a ground instance of the last element φ of
φ⃗ which results from applying a model for cond(φ⃗) to φ. In our implementation,
we always maintain such a model. In general, these models are not unique:
For example, after the first acceleration step, we might use Inv(0, 5000) =⇒
Inv(X1, 5000) for anyX1 ∈ [1, 5000]. The reason is that φ+

1 can simulate arbitrarily
many resolution steps with φr|ψ1 , depending on the choice of N .

After starting the derivation with Init, we apply the only fact φf via Step.
Next, we apply φr, projected to the case X1 < 5000. Since φr is recursive, we
may apply Accelerate afterwards, resulting in the new clause φ+

1 .
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Then we apply φr, projected to the case X1 ≥ 5000. Note that the current
model (resulting in the ground head-literal Inv(1, 5000)) cannot be extended to a
model for φr|ψ2 (which requires X1 ≥ 5000). However, as the model is not part
of the state, we may choose a different one at any point, which is important for
implementing ADCL via incremental SMT, see Sect. 4. Hence, we can apply
φr|ψ2

nevertheless.

Now we apply Accelerate again, resulting in the new clause φ+
2 . Finally,

we apply the only query φq via Step, resulting in a conditional empty clause
with a satisfiable condition, such that we can finish the proof via Refute.

Later (in Def. 14), we will define reasonable strategies for applying the rules
of our calculus, which ensure that we use Accelerate instead of applying Step
10001 times in our example.

To see how our calculus proves satisfiability, assume that we replace φq with

Inv(10000, X2) ∧X2 ̸= 10000 =⇒ ⊥.

Then resolution with φq via the rule Step is no longer applicable and our
derivation continues as follows after the second application of Accelerate:

(Π2, [φf , φ
+
1 , φ

+
2 ], [∅,∅, {φ

+
1 }, {φ

+
2 }])

B
⇝ (Π2, [φf , φ

+
1 ], [∅,∅, {φ

+
1 , φ

+
2 }])

B
⇝ (Π2, [φf ], [∅, {φ+

1 }])
B
⇝ (Π2, [], [{φf}])
P
⇝ sat

For all three Backtrack-steps, φq is clearly inactive, as adding it to φ⃗ results in
a resolvent with an unsatisfiable condition. The first Backtrack-step is possible
since φr|ψ1

and φ+
1 are inactive, as they require X1 < 5000 for the first argument

X1 of their body-literal, but φ+
2 ensures Y1 > 5000 for the first argument Y1 of

its head-literal. Moreover, φr|ψ2
and φ+

2 are blocked, as φr|ψ2
⊑ φ+

2 . The second
Backtrack-step is performed since φr|ψ1 , φr|ψ2 , φ

+
1 , and φ

+
2 are blocked (as

φr|ψ1 ⊑ φ+
1 and φr|ψ2 ⊑ φ+

2 ). The third Backtrack-step is possible since φr|ψ1

and φ+
1 are blocked, and φr|ψ2

and φ+
2 cannot be applied without applying φ+

1

first, so they are inactive. Thus, we reach a state where the only fact φf is blocked
and hence Prove applies.



ADCL: Acceleration Driven Clause Learning for Constrained Horn Clauses 11

To see an example for Covered, assume that we apply φr|ψ1
twice before

using Accelerate. Then the following derivation yields the trace that we
obtained after the first acceleration step above:

(Φ, [φf , φr|ψ1 ], [∅,∅,∅])

S
⇝ (Φ, [φf , φr|ψ1

, φr|ψ1
], [∅,∅,∅,∅])

A
⇝ (Π1, [φf , φr|ψ1

, φ+
1 ], [∅,∅,∅, {φ

+
1 }])

C
⇝ (Π1, [φf , φr|ψ1 ], [∅,∅, {φ+

1 }]) (as [φr|ψ1 , φ
+
1 ] ⊏ φ

+
1 )

C
⇝ (Π1, [φf ], [∅, {φr|ψ1

}]) (as φr|ψ1
⊏ φ+

1 )

S
⇝ (Π1, [φf , φ

+
1 ], [∅, {φr|ψ1},∅]) (†)

As one can see in the example above, our calculus uses forward reasoning, i.e.,
it starts with a fact and resolves it with rules until a query applies. Alternatively,
one could use backward reasoning by starting with a query and resolving it with
rules until a fact applies, as in logic programming.

Our calculus could easily be adapted for backward reasoning. Then it would
start resolving with a query and aim for resolving with a fact, while all other
aspects of the calculus would remain unchanged. Such an adaption would be
motivated by examples like

F(. . .) ∧ . . . =⇒ G(. . .)

G(. . .) ∧ . . . =⇒ H(. . .)

G(. . .) ∧ . . . =⇒ ⊥

where H is the entry-point of a satisfiable sub-problem. With forward reasoning,
ADCL might spend lots of time on that sub-problem, whereas unsatisfiability
would be proven after just two steps with backward reasoning. However, in our
tests, backward reasoning did not help on any example. Presumably, the reason
is that the benchmark set from our evaluation does not contain examples with
such a structure. Thus, we did not pursue this approach any further.

3.3 Properties of ADCL

In this section, we investigate the main properties of ADCL. Most importantly,
ADCL is sound.

Theorem 12 (Soundness). If Φ⇝∗ sat, then Φ is satisfiable. If Φ⇝∗ unsat,
then Φ is unsatisfiable.

Proof (Sketch).3 For unsat, we have Φ ⇝∗ (Π, φ⃗, B⃗) ⇝ unsat where Π ≡A Φ
and φ⃗ ∈ sip(Π)∗ is a refutation. For sat, assume that Φ is unsatisfiable, but

3 To improve readability, we only present some proof sketches in the paper and refer
to the appendix for all full proofs.
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Φ ⇝ s = (Φ, [], [∅]) ⇝∗ (Π, [], [B]) = s′ ⇝ sat. Then there is a refutation
φ⃗ ∈ sip(Π)∗ that is minimal in the sense that φi ̸⊏ sip(Π) for all 1 ≤ i ≤ |φ⃗| and
φ⃗′ ̸⊑ sip(Π) for all infixes φ⃗′ of φ⃗ whose length is at least 2. We say that φ⃗ is

disabled by a state (Π ′, φ⃗′, B⃗′) if φ⃗′ has a prefix [φ′
i]
k
i=1 such that φi ≡A φ′

i for all
1 ≤ i ≤ k and φk+1 ≡A φ for some φ ∈ B′

k. Then φ⃗ is disabled by s′, but not by
s. Let s(i) be the last state in the derivation Φ⇝∗ sat where φ⃗ is enabled. Then

s(i)
S
⇝ s(i+1) would imply that φ⃗ is enabled in s(i+1); s(i)

A
⇝ s(i+1) would imply

that two consecutive clauses in φ⃗ are both equivalent to the newly learned clause,

contradicting minimality of φ⃗; s(i)
C
⇝ s(i+1) would imply that the trace of s(i)

is not minimal, which also contradicts minimality of φ⃗; and s(i)
B
⇝ s(i+1) would

imply that an element of φ⃗ is strictly redundant w.r.t. the last set of blocking
clauses in s(i), which again contradicts minimality of φ⃗. Hence, we derived a
contradiction. ⊓⊔

Another important property of our calculus is that it cannot get “stuck” in
states other than sat or unsat.

Theorem 13 (Normal Forms). If Φ⇝+ s where s is in normal form w.r.t.
⇝, then s ∈ {sat, unsat}.

Clearly, our calculus admits many unintended derivations, e.g., by applying
Step over and over again with recursive CHCs instead of accelerating them. To
prevent such derivations, a reasonable strategy is required.

Definition 14 (Reasonable Strategy). We call a strategy for ⇝ reasonable
if the following holds:

(1) If (Π, φ⃗, B⃗)⇝+ (Π, φ⃗ :: φ⃗′, B⃗′) for some φ⃗′ as in the definition of Covered,
then Covered is used.

(2) Accelerate is used with higher preference than Step.
(3) Accelerate is only applied to the shortest recursive suffix φ⃗⟲ such that

accel(φ⃗⟲) is not redundant w.r.t. sip(Π).
(4) If φ⃗ = [], then Step is only applied with facts or conditional empty clauses.

We write ⇝rs for the relation that results from ⇝ by imposing a reasonable
strategy.

Def. 14 (1) ensures that we backtrack if we added a redundant sequence φ⃗′

of CHCs to the trace. However, for refutational completeness (Thm. 15), it is
important that the application of Covered is only enforced if no new clauses have
been learned while constructing φ⃗′ (i.e., Π remains unchanged in the derivation

(Π, φ⃗, B⃗)⇝+ (Π, φ⃗ :: φ⃗′, B⃗′)). The reason is that after applying Accelerate,
the trace might have the form φ⃗ = φ⃗1 :: φ⃗2 :: accel(φ⟲) where φ⃗2 :: accel(φ⟲) ⊏
accel(φ⟲) even if φ⃗2 :: φ⟲ was non-redundant before learning accel(φ⟲). If we
enforced backtracking via Covered in such situations (which would yield the
trace φ⃗1 :: φ⃗2), then to maintain refutational completeness, we would have to
ensure that we eventually reach a state with the trace φ⃗1 :: accel(φ⟲) ⊑ φ⃗.
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However, this cannot be guaranteed, since our calculus does not terminate in
general (see Thm. 18).

Def. 14 (2) ensures that we do not “unroll” recursive derivations more than
once via Step, but learn new clauses that cover arbitrarily many unrollings via
Accelerate instead.

Def. 14 (3) has two purposes: First, it prevents us from learning redundant
clauses, as we must not apply Accelerate if accel(φ⃗⟲) is redundant. Second, it
ensures that we accelerate “short” recursive suffixes first. The reason is that if
φ⃗ = φ⃗1 :: φ⃗2 :: φ⃗3 where φ⃗2 :: φ⃗3 and φ⃗3 are recursive, then

grnd(accel(φ⃗2 :: φ⃗3))
Def. 4
=

⋃
n∈N≥1

grnd((φ⃗2 :: φ⃗3)
n)

⊆
⋃
n∈N≥1

⋃
m∈N≥1

grnd((φ⃗2 :: φ⃗m3 )n)
Def. 4
= grnd(accel(φ⃗2 :: accel(φ⃗3))),

but the other direction (“⊇”) does not hold in general. So in this way, we learn
more general clauses.

Def. 14 (4) ensures that the first element of φ⃗ is always a fact or a conditional
empty clause. For unsatisfiable CHC problems, the reason is that Refute will
never apply if φ⃗ starts with a rule or a query. For satisfiable CHC problems,
Prove only applies if all facts and conditional empty clauses are blocked. But
in order to block them eventually, we have to add them to the trace via Step,
which is only possible if φ⃗ is empty.

Despite the restrictions in Def. 14, our calculus is still refutationally complete.

Theorem 15 (Refutational Completeness). If Φ is unsatisfiable, then

Φ⇝∗
rs unsat.

Proof (Sketch). Given a refutation φ⃗, one can inductively define a derivation
Φ⇝∗

rs unsat where each step applies Accelerate or Step. For the latter, it is
crucial to choose the next clause in such a way that it corresponds to as many
steps from φ⃗ as possible, and that it is maximal w.r.t. ⊏, to avoid the necessity
to backtrack via Covered. ⊓⊔

However, in general our calculus does not terminate, even with a reasonable
strategy. Note that even though CHC-SAT is undecidable for, e.g., CHCs over the
theory LIA, non-termination of ⇝rs is not implied by soundness of ADCL. The
reason is that we assume oracles for undecidable sub-problems like SMT, checking
redundancy, and acceleration. As acceleration may introduce non-linear integer
arithmetic, both SMT and checking redundancy may even become undecidable
when analyzing CHCs over a decidable theory like LIA.

To prove non-termination, we extend our calculus by one additional compo-
nent: A mapping L : sip(Π) → P(sip(Φ)∗) from sip(Π) to regular languages over
sip(Φ), where P(sip(Φ)∗) denotes the power set of sip(Φ)∗. We will show that this
mapping gives rise to an alternative characterization of the ground instances of
sip(Π), which will be exploited in our non-termination proof (Thm. 18). Moreover,
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this mapping is also used in our implementation to check redundancy, see Sect. 4.
To extend our calculus, we lift L from sip(Π) to sip(Π)∗ as follows:

L(ε) := ε L(π⃗ :: π) := L(π⃗) :: L(π)

Here, “::” is also used to denote language concatenation, i.e., we have

L1 :: L2 := {π⃗1 :: π⃗2 | π⃗1 ∈ L1, π⃗2 ∈ L2}.

So while we lift other notations to sequences of transitions via resolution, L(τ⃗)
does not stand for L(res(τ⃗)).

Definition 16 (ADCL with Regular Languages). We extend states (see
Def. 9) by a fourth component L : sip(Π) → P(sip(Φ)∗). The rules Init and
Accelerate of the ADCL calculus (see Def. 10) are adapted as follows:

L(φ) = {φ} for all φ ∈ sip(Φ)

Φ⇝rs (Φ, [], [∅],L) (Init)

φ⃗⟲ is recursive |φ⃗⟲| = |B⃗⟲| accel(φ⃗⟲) = φ L′ = L ⊎ (φ 7→ L(φ⃗⟲)+)

(Π, φ⃗ :: φ⃗⟲, B⃗ :: B⃗⟲,L)⇝rs (Π ∪ {φ}, φ⃗ :: φ, B⃗ :: {φ},L′)
(Accelerate)

All other rules from Def. 10 leave the last component of the state unchanged.

Here, L(π)+ denotes the “Kleene plus” of L(π), i.e., we have

L(π)+ :=
⋃

n∈N≥1

L(π)n.

Note that Def. 16 assumes a reasonable strategy (indicated by the notation ⇝rs).
Hence, when Accelerate is applied, we may assume φ /∈ sip(Π) = dom(L).
Otherwise, φ would be redundant and hence a reasonable strategy would not
allow the application of Accelerate. For this reason, we may write “⊎” in the
definition of L′.

The following lemma allows us to characterize the ground instances of elements
of sip(Π) via L. Here, we lift grnd to sets by defining grnd(X) :=

⋃
x∈X grnd(x),

where X may be a set of CHCs or a language over CHCs. Thus, grnd(L(π)) is
the set of all ground instances of the final resolvents of the sequences in L(π).

Lemma 17. If Φ⇝∗
rs (Π, φ⃗, B⃗,L) and π ∈ sip(Π), then grnd(π) = grnd(L(π)).

Now we are ready to prove that, even with a reasonable strategy, ADCL does
not terminate.

Theorem 18 (Non-Termination). There exists a satisfiable CHC problem Φ
such that Φ ̸⇝∗

rs sat. Thus, ⇝rs does not terminate.
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Proof (Sketch). One can construct a satisfiable CHC problem Φ such that all
(infinitely many) resolution sequences with Φ are square-free, i.e., they do not
contain a non-empty subsequence of the form φ⃗ :: φ⃗. For example, this can
be achieved by encoding the differences between subsequent numbers of the
Thue-Morse sequence [44,45]. As an invariant of our calculus, L(Π) just contains

finitely many square-free words for any reachable state (Π, φ⃗, B⃗,L). As grnd(Π) =
grnd(L(Π)), this means that Π cannot cover all resolution sequences with Φ.
Thus, the assumption Φ⇝∗

rs sat results in a contradiction. ⊓⊔

The construction from the proof of Thm. 18 can also be used to show that
there are non-terminating derivations Φ ⇝rs s1 ⇝rs s2 ⇝rs . . . where Φ is
unsatisfiable. However, in this case there is also another derivation Φ⇝∗

rs unsat
due to refutational completeness (see Thm. 15).

4 Implementing ADCL

We now explain how we implemented ADCL efficiently in our tool LoAT. Here we
focus on proving unsatisfiability. The reason is that our implementation cannot
prove sat at the moment, since it uses certain approximations that are incorrect
for sat, as detailed below. Thus, when applying Prove, our implementation
returns unknown instead of sat. Our implementation uses Yices [18] and Z3 [43]
for SMT solving. Moreover, it is based on the acceleration technique from [23],
whose implementation solves recurrence relations with PURRS [4].

Checking Redundancy To check redundancy in Accelerate (as required for
reasonable strategies in Def. 14), we use the fourth component L of states intro-
duced in Def. 16. More precisely, for Accelerate, we check if L(φ⃗⟲)+ ⊆ L(φ)
holds for some learned clause φ. In that case, accel(φ⃗⟲) is redundant due to
Lemma 17. Since L(φ⃗⟲)+ ⊆ L(φ) is simply an inclusion check for regular
languages, it can be implemented efficiently using finite automata. Our imple-
mentation uses the automata library libFAUDES [40].

However, this is just a sufficient criterion for redundancy. For example, a
learned clause might be redundant w.r.t. an original clause, but such redundancies
cannot be detected using L. To see this, note that we have |L(φ)| = 1 if φ is an
original clause, but |L(φ)| = ∞ if φ is a learned clause.

For Covered, we also check redundancy via L, but if φ⃗′ = φ′, i.e., if |φ⃗′| = 1,
then we only apply Covered if φ′ is an original clause. Then L(φ′) ⊆ L(φ) for
some φ ̸= φ′ implies that φ is a learned clause. Hence, we have L(φ′) ⊂ L(φ),
as |L(φ′)| = 1 < |L(φ)| = ∞. This is just a heuristic, as even L(φ′) ⊂ L(φ)
just implies φ′ ⊑ φ, but not φ′ ⊏ φ. To see this, consider an original clause
φ = (F(X) =⇒ F(0)). Then L(φ) = {φ}, accel(φ) ≡A φ (but not necessarily
accel(φ) = φ, as accel(φ) and φ might differ syntactically), and L(accel(φ)) =
L(φ)+. So we have L(φ) ⊂ L(accel(φ)) and φ ⊑ accel(φ), but φ ̸⊏ accel(φ). This
is uncritical for proving unsat, but a potential soundness issue for proving sat,
which is one reason why our current implementation cannot prove sat.
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Implementing Step and Blocked Clauses To find an active clause in Step,
we proceed as described before Def. 8, i.e., we search for a suitable element of
sip(Π) “on the fly”. So we search for a clause φ ∈ Π whose body-literal unifies
with the head-literal of res(φ⃗) using an mgu θ. Then we use an SMT solver to
check whether

θ(cond(res(φ⃗))) ∧ θ(cond(φ)) ∧
∧

π∈B∩sip(φ)

¬θ(cond(π)) (Step–SMT)

is satisfiable, where B is the last element of B⃗. Here, we assume that res(φ⃗)
and φ are variable disjoint (and thus the mgu θ exists). If we find a model σ
for Step–SMT, then we apply Step with φ|sip(cond(φ),σ). So to exclude blocked
clauses, we do not use the redundancy check based on L explained above, but
we conjoin the negated conditions of certain blocked clauses to Step–SMT. To
see why we only consider blocked clauses from sip(φ), consider the case that
B = {π} is a singleton. Note that both θ(cond(φ)) and θ(cond(π)) might contain
variables that do not occur as arguments of predicates in the (unified) head- or
body-literals. So if

φ ≡A ∀X⃗, Y⃗φ, X⃗ ′. F(X⃗) ∧ ψφ(X⃗, Y⃗φ, X⃗ ′) =⇒ G(X⃗ ′),

φ′ ≡A ∀X⃗, Y⃗φ′ , X⃗ ′. F(X⃗) ∧ ψφ′(X⃗, Y⃗φ′ , X⃗ ′) =⇒ G(X⃗ ′), and

π ≡A ∀X⃗, Y⃗π, X⃗ ′. F(X⃗) ∧ ψπ(X⃗, Y⃗π, X⃗ ′) =⇒ G(X⃗ ′),

for some φ′ ∈ sip(φ), then φ′ ⊑ π iff

|=A ψφ′ =⇒ ∃Y⃗π. ψπ. (⊑–equiv)

Thus, to ensure that we only find models σ such that sip(cond(φ), σ) is not
blocked by π, we would have to conjoin

¬(ψφ =⇒ ∃Y⃗π. ψπ) ≡A ψφ ∧ ∀Y⃗π. ¬ψπ

to the SMT problem. Unfortunately, as SMT solvers have limited support for
quantifiers, such an encoding is impractical. Hence, we again use a sufficient
criterion for redundancy: If

|=A ψφ′ =⇒ ψπ, (⊑–sufficient)

then ⊑–equiv trivially holds as well. So to exclude conjunctive variants φ′ of φ
where ⊑–sufficient is valid, we add

¬(ψφ =⇒ ψπ) ≡A ψφ ∧ ¬ψπ ( ̸⊑–sufficient)

to the SMT problem. If Y⃗π ̸⊆ Y⃗φ, then satisfiability of ̸⊑–sufficient is usually
trivial. Thus, to avoid increasing the size of the SMT problem unnecessarily, we
only add ̸⊑–sufficient to the SMT problem if π ∈ sip(φ). Instead, we could

try to rename variables from Y⃗π to enforce Y⃗π ⊆ Y⃗φ. However, it is difficult to
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predict which renaming is the “right” one, i.e., which renaming would allow us
to prove redundancy.

If B ∩ sip(φ) contains several clauses π1, . . . , πℓ, then ⊑–sufficient becomes

|=A ψφ′ =⇒ cond(π1) or . . . or |=A ψφ′ =⇒ cond(πℓ) (⊑–sufficient+)

Instead, our encoding excludes syntactic implicants φ′ of φ where

|=A ψφ′ =⇒ cond(π1) ∨ . . . ∨ cond(πℓ) (⊑–insufficient+)

which is a necessary, but not a sufficient condition for ⊑–sufficient+. To see
why this is not a problem, first note that ⊑–sufficient+ trivially holds if
ψφ′ ∈ {cond(πi) | 1 ≤ i ≤ ℓ}. Otherwise, we have

|=A (cond(π1) ∨ . . . ∨ cond(πℓ)) =⇒
∨

sip(ψφ) \ {ψφ′}

because we assumed ψφ′ /∈ {cond(πi) | 1 ≤ i ≤ ℓ}, which implies {cond(πi) | 1 ≤
i ≤ ℓ} ⊆ sip(ψφ) \ {ψφ′}. Together with ⊑–insufficient+, this implies

|=A ψφ′ =⇒
∨

sip(ψφ) \ {ψφ′}.

Therefore, we have ψφ ≡A
∨

sip(ψφ) \ {ψφ′}. Thus, we may assume that
⊑–insufficient+ implies redundancy without loss of generality. The reason
is that we could analyze the following equivalent CHC problem instead of Π,
otherwise:

(Π \ {φ}) ∪ (sip(φ) \ {φ′})
Hence, in Step–SMT, we add (a variable-renamed variant of)

¬(ψφ =⇒ cond(π1) ∨ . . . ∨ cond(πℓ)) ≡A ψφ ∧ ¬cond(π1) ∧ . . . ∧ ¬cond(πℓ)

≡A cond(φ) ∧
∧

π∈B∩sip(φ)

¬cond(π)

to the SMT problem.

Example 19. Consider the state (†) from Ex. 11. First applying Step with φr|ψ1

and then applying Covered yields

(Π1, φ⃗, [∅, {φr|ψ1}, {φr|ψ1}])

where φ⃗ = [φf , φ
+
1 ]. When attempting a Step with an element of sip(φr), we get:

θ(cond(φ⃗)) ≡A X1 = 0 ∧X2 = 5k ∧N > 0 ∧X ′
1 < 5001 ∧X ′

1 = X1 +N ∧X ′
2 = X2

θ(cond(φr)) ≡A ((X ′
1 < 5k ∧ Y2 = X ′

2) ∨ (X ′
1 ≥ 5k ∧ Y2 = X ′

2 + 1))∧
π∈B∩sip(φr)

¬θ(cond(π)) = ¬θ(cond(φr|ψ1
)) ≡A X ′

1 ≥ 5k ∨ Y2 ̸= X ′
2

Here, 5k abbreviates 5000. Then Step–SMT is equivalent to

X1 = 0 ∧X2 = N = X ′
1 = X ′

2 = 5k ∧ Y2 = 5001.

Hence, we have σ |=A X ′
1 ≥ 5k ∧ Y2 = X ′

2 + 1 for the unique model σ of
Step–SMT, i.e., σ satisfies the second disjunct of cond(φr). Thus, we add
φr|sip(cond(φr),σ) = φr|ψ2

to the trace.
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Leveraging Incremental SMT The search for suitable models can naturally
be implemented via incremental SMT solving: When trying to apply Step, we
construct θ in such a way that θ(cond(res(φ⃗))) = cond(res(φ⃗)). This is easily
possible, as θ just needs to unify predicates whose arguments are duplicate free
and pairwise disjoint vectors of variables. Then we push

θ(cond(φ)) ∧
∧

π∈B∩sip(φ)

¬θ(cond(π)) (Incremental)

to the SMT solver. If the model from the previous resolution step can be extended
to satisfy Incremental, then the SMT solver can do so, otherwise it searches for
another model. If it fails to find a model, we pop Incremental, i.e., we remove
it from the current SMT problem. Accelerate can be implemented similarly
by popping θ(cond(φ⃗⟲)) and pushing θ(cond(φ)) instead.

Note that satisfiability of φ⃗ is an invariant of ADCL. Hence, as soon as the
last element of φ⃗ is a query, Refute can be applied without further SMT checks.
Otherwise, if Step cannot be applied with any clause, then Backtrack or
Prove can be applied without further SMT queries.

Dealing with Incompleteness As mentioned in Sect. 3, we assumed that
we have oracles for checking redundancy, satisfiability of QF(A)-formulas, and
acceleration when we formalized ADCL. As this is not the case in practice, we
now explain how to proceed if those techniques fail or approximate.

As explained above, SMT is needed for checking activity in Step. If the SMT
solver fails, we assume inactivity. Thus, we do not exhaust the entire search space
if we falsely classify active clauses as inactive. Hence, we may miss refutations,
which is another reason why our current implementation cannot prove sat.

Regarding acceleration, our implementation of accel may return under-ap-
proximations, i.e., we just have grnd(accel(φ)) ⊆

⋃
n∈N≥1

grnd(φn). While this

is uncritical for correctness by itself (as learned clauses are still entailed by Φ),
it weakens our heuristic for redundancy via L, as we no longer have grnd(φ) =
grnd(L(φ)), but just grnd(φ) ⊆ grnd(L(φ)) for learned clauses φ.

Another pitfall when using under-approximating acceleration techniques is
that we may have φ⃗⟲ ̸⊑ accel(φ⃗⟲). In this case, applying Accelerate can
result in an inconsistent trace where cond(φ⃗) is unsatisfiable. To circumvent this
problem, we only add accel(φ⃗⟲) to the trace after removing φ⃗⟲ if doing so results
in a consistent trace. Here, we could do better by taking the current model σ
into account when accelerating φ⃗⟲ in order to ensure σ |=A cond(accel(φ⃗⟲)). We
leave that to future work.

Restarts When testing our implementation, we noticed that several instances
“jiggled”, i.e., they were solved in some test runs, but failed in others. The reason
is a phenomenon that is well-known in SAT solving, called “heavy-tail behavior”.
Here, the problem is that the solver sometimes gets “stuck” in a part of the
state space whose exploration is very expensive, even though finding a solution
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in another part of the search space is well within the solver’s capabilities. This
problem also occurs in our implementation, due to the depth-first strategy of
our solver (where derivations may even be non-terminating, see Thm. 18). To
counter this problem, SAT solvers use restarts [27], where one of the most popular
approaches has been proposed by Luby et al. [41]. For SAT solving, the idea is
to restart the search after a certain number of conflicts, where the number of
conflicts for the next restart is determined by the Luby sequence, scaled by a
parameter u. When restarting, randomization is used to avoid revisiting the same
part of the search space again. We use the same strategy with u = 10, where we
count the number of learned clauses instead of the number of conflicts. To restart
the search, we clear the trace, change the seed of the SMT solver (which may
result in different models such that we may use different syntactic implicants),
and shuffle the vectors of clauses (to change the order in which clauses are used
for resolution).

5 Related Work and Experiments

We presented the novel ADCL calculus for (dis)proving satisfiability of CHCs.
Its distinguishing feature is its use of acceleration for learning new clauses. For
unsatisfiability, these learned clauses often enable very short resolution proofs for
CHC problems whose original clauses do not admit short resolution proofs. For
satisfiability, learned clauses often allow for covering the entire (usually infinite)
search space by just considering finitely many resolution sequences.

Related Work The most closely related work is [33], where acceleration is used
in two ways: (1) as preprocessing and (2) to generalize interpolants in a CEGAR
loop. In contrast to (1), we use acceleration “on the fly” to accelerate resolvents. In
contrast to (2), we do not use abstractions, so our learned clauses can directly be
used in resolution proofs. Moreover, [33] only applies acceleration to conjunctive
clauses, whereas we accelerate conjunctive variants of arbitrary clauses. So in our
approach, acceleration techniques are applicable more often, which is particularly
useful for finding long counterexamples. However, our approach solely relies on
acceleration to handle recursive CHCs, whereas [33] incorporates acceleration
techniques into a CEGAR loop, which can also analyze recursive CHCs without
accelerating them. Thus, the approach from [33] is orthogonal to ADCL. Both
(1) and (2) are implemented in Eldarica, but according to its authors, (2) is
just supported for transition systems, but not yet for CHCs. Hence, we only
considered (1) in our evaluation (named Eld. Acc. below). Earlier, an approach
similar to (2) has been proposed in [13], but to the best of our knowledge, it has
never been implemented.

Transition power abstraction (TPA) [7] computes a sequence of over-approx-
imations for transition systems where the nth element captures 2n instead of
just n steps of the transition relation. So like ADCL, TPA can help to find long
refutations quickly, but in contrast to ADCL, TPA relies on over-approximations.
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Some leading techniques for CHC-SAT like GPDR [32] and, in particular, the
Spacer algorithm [36], are adaptions of the IC3 algorithm [11] from transition
systems to CHCs. IC3 computes a sequence of abstractions of reachable states,
aiming to find an abstraction that is inductive w.r.t. the transition relation and
implies safety.

Other approaches for CHC-SAT are based on interpolation [17, 34], CEGAR
and predicate abstraction [28, 34], automata [17], machine learning [20, 50],
bounded model checking (BMC) [6], or combinations thereof.

Related approaches for transition systems include [5] and [10]. The approach
of [5] uses acceleration to analyze a sequence of flattenings of a given transition
system, i.e., under-approximations without nested loops, until a counterexample
is found or a fixpoint is reached. Like ADCL, this approach does not terminate
in general. However, it does terminate for so-called flattable systems. Whether
ADCL terminates for flattable systems as well is an interesting question for future
work. In contrast to ADCL, [5] has no notion of learning or redundancy, so that
the same computations may have to be carried our several times for different
flattenings.

The technique of [10] also lifts acceleration techniques to transition systems,
but circumvents non-termination by using approximative acceleration techniques
in the presence of disjunctions. In contrast, ADCL handles disjunctions via
syntactic implicants. Like ADCL, [10, Alg. 2] learns new transitions (Line 9), but
only if they are non-redundant (Line 8). However, it applies acceleration to all
syntactic self-loops, whereas ADCL explores the state space starting from facts,
such that only reachable loops are accelerated. Note that the approach from [10]
is very similar to the approach that has been used by earlier versions of LoAT
for proving non-termination [24]. We recently showed in [25] that for the purpose
of proving non-termination, ADCL is superior to LoAT’s earlier approach.

Finally, [39] uses under-approximating acceleration techniques to enrich the
control-flow graph of C programs in order to find “deep counterexamples”, i.e.,
long refutations. In contrast to ADCL, [39] relies on external model checkers for
finding counterexamples, and it has no notion of redundancy so that the model
checker may explore “superfluous” paths that use original instead of accelerated
edges of the control-flow graph.

Regarding acceleration, there are many results regarding classes of loops over
integer variables where linear arithmetic suffices to express their transitive closure,
i.e., they can be accelerated within a decidable theory. The most important
such classes are Difference Bounds [16], Octagons [8], Finite Monoid Affine
Relations [21], and Vector Addition Systems with States [30]. In an orthogonal
line of research, monotonicity-based acceleration techniques have been developed
[22, 23, 39]. While the latter provide fewer theoretical guarantees in terms of
completeness and whether the result can be expressed in a decidable logic or
not, they are not restricted to loops whose transitive closure is definable in linear
arithmetic.

Regarding other theories, the technique from [30] for Vector Addition Sys-
tems with States has also been applied to systems over rationals [47]. Similarly,
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monotonicity-based approaches immediately carry over to rationals or reals. The
only approach for acceleration in the presence of Boolean variables that we are
aware of is [46]. However, this technique yields over-approximations.

Finally, some acceleration techniques for arrays have been proposed, e.g., [15,
31]. The approach of [15] improves the framework of [38] to reason about programs
with arrays using a first-order theorem prover by integrating specialized techniques
for dealing with array accesses where the indices are monotonically increasing
or decreasing. The technique of [31] uses quantifier elimination techniques to
accelerate loops where arrays can be separated into read- and write-only arrays.

Experiments So far, our implementation of ADCL in LoAT is restricted to
integer arithmetic. Thus, to evaluate our approach, we used the examples from
the category LIA-Lin (linear CHCs with linear integer arithmetic) from the
CHC competition ’22 [14], which contains numerous CHC problems resulting
from actual program verification tasks. Somewhat surprisingly, these examples
contain additional features like variables of type Bool and the operators div

and mod. Since variables of type Bool are used in most of the examples, we
extended our implementation with rudimentary support for Bools. In particular,
we implemented a simplistic acceleration technique for Bools (note that we cannot
use the approach of [46], as it yields over-approximations). We excluded the
72 examples that use div or mod, as those operators are not supported by our
implementation.

To accelerate CHCs where some variables are of type Bool, we use an adaption
of the acceleration calculus from [23]. To apply it to φ := (F(X⃗) ∧ ψ =⇒ F(Y⃗ )),
φ needs to be deterministic, i.e., there must be a substitution θ such that
ψ |=A Y⃗ = θ(X⃗) and V(θ(X⃗)) ⊆ X⃗. Then LoAT has to compute a closed form,

i.e., a vector C⃗ such that C⃗ ≡A θN (X⃗). For integer variables, closed forms
are computed via recurrence solving. For Boolean variables B, LoAT can only
construct a closed form if there is a k ∈ N such that θk(B) does not contain
Boolean variables, or θk(B) = θk+1(B). Once a closed form has been computed,
the calculus from [23] can be applied. However, in the presence of Booleans, it
has to be restricted to theory-agnostic acceleration techniques. So more precisely,
in the presence of Booleans, only the acceleration techniques monotonic increase
and monotonic decrease from [23] can be used.

Using the remaining 427 examples, we compared our implementation with
the leading CHC-SAT solvers Spacer [36] (which is part of Z3 [43]), Eldarica [34],
and Golem [7]. Additionally, we compared with Z3’s implementation of BMC. As
mentioned above, Eldarica supports acceleration as preprocessing. Thus, besides
Eldarica’s default configuration (which does not use acceleration), we also com-
pared with a configuration Eld. Acc. where we enabled this feature. By default,
Golem uses the Spacer algorithm, but the Spacer implementation in Z3 performed
better in our tests. Thus, we used Golem’s implementation of TPA instead, which
targets similar classes of examples like ADCL, as explained above. We used Z3
4.11.2, Eldarica 2.0.8, and Golem 0.3.0 and ran our experiments on StarExec [48]



22 Florian Frohn and Jürgen Giesl

unsat sat
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LoAT 30 5 (5) 0

Z3 BMC 24 1 (1) 23

Spacer 24 0 (0) 93

Eldarica 23 0 (–) 122

Golem TPA 15 0 (0) 45

Eld. Acc. 21 – (0) 105
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Fig. 2: Comparing LoAT with other CHC solvers

with a wallclock timeout of 300s, a cpu timeout of 1200s, and a memory limit of
128GB per example.

The results can be seen in Fig. 2. We evaluated all tools on the 209 examples
that do not use Bools (Int only) and on the entire benchmark set (Int & Bool).
The table on the left shows that LoAT is very competitive w.r.t. proving unsat in
terms of solved instances. The entries in the column “unique” show the number
of examples where the respective tool succeeds and all others fail. Here we
disregard Eld. Acc., as it would be pointless to consider several variants of the
same algorithm in such a comparison. If we consider Eld. Acc. instead of Eldarica,
then the numbers change according to the values given in parentheses.

example LoAT’s refutation original refutation

chc-LIA-Lin 043.smt2 6 965553

chc-LIA-Lin 045.smt2 2 684682683

chc-LIA-Lin 047.smt2 3 72536

chc-LIA-Lin 059.smt2 3 100000001

chc-LIA-Lin 154.smt2 2 134217729

chc-LIA-Lin 358.smt2 12 400005

chc-LIA-Lin 362.smt2 12 400005

chc-LIA-Lin 386.smt2 15 600003

chc-LIA-Lin 401.smt2 8 200005

chc-LIA-Lin 402.smt2 4 134217723

chc-LIA-Lin 405.smt2 9 100012

Table 1: Comparing lengths of refutation
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The numbers indicate that LoAT is particularly powerful on examples that
operate on Ints only, but it is also competitive for proving unsatisfiability of
examples that may operate on Bools, where it is only slightly weaker than
Spacer and Z3 BMC. This is not surprising, as the core of LoAT’s approach are
its acceleration techniques, which have been designed for integers. In contrast,
Spacer’s algorithm is similar to GPDR [32], which generalizes the IC3 algorithm
[11] from transition systems over Booleans to transition systems over theories
(like integers), and BMC is theory agnostic.

The figure on the right shows how many proofs of unsatisfiability were found
within a given runtime, by each tool. Here, all examples (Int & Bool) are taken
into account. LoAT finds many proofs of unsatisfiability quickly (73 proofs within
8s). Z3 BMC catches up after 12s (73 proofs for both LoAT and Z3 BMC) and
takes over the lead after 14s (LoAT 73, Z3 BMC 74). Spacer catches up with
LoAT after 260s.

To illustrate LoAT’s ability to find short refutations, Table 1 compares the num-
ber of resolution steps in LoAT’s “accelerated” refutations (that also use learned
clauses) with the corresponding refutations that only use original clauses. Here,
we restrict ourselves to those instances that can only be solved by LoAT, as the
unsatisfiable CHC problems that can also be solved by other tools usually already
admit quite short refutations without learned clauses. To compute the length
of the original refutations, we instrumented each predicate with an additional
argument c. Moreover, we extended the condition of each fact ψ =⇒ G(..., c)
with c = 1 and the condition of each rule F(..., c) ∧ ψ =⇒ G(..., c′) with
c′ = c + 1. Then the value of c before applying a query corresponds to the
number of resolution steps that one would need if one only used original clauses,
and it can be extracted from the model found by the SMT solver. The numbers
clearly show that learning clauses via acceleration allows to reduce the length
of refutations dramatically. In 76 cases, LoAT learned clauses with non-linear
arithmetic.

Our implementation is open-source and available on Github. For the sources,
a pre-compiled binary, and more information on our evaluation, we refer to [1, 2].
In future work, we plan to extend our implementation to also prove sat, and we
will investigate how to construct models for satisfiable CHC problems. Moreover,
we want to add support for further theories by developing specialized acceleration
techniques. Furthermore, we intend to lift ADCL to non-linear CHCs.
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for verifying Java programs. In: CAV ’16. pp. 352–358. LNCS 9779 (2016).
https://doi.org/10.1007/978-3-319-41528-4 19

36. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for
recursive programs. Formal Methods Syst. Des. 48(3), 175–205 (2016).
https://doi.org/10.1007/s10703-016-0249-4

37. Kostyukov, Y., Mordvinov, D., Fedyukovich, G.: Beyond the elementary represen-
tations of program invariants over algebraic data types. In: PLDI ’21. pp. 451–465
(2021). https://doi.org/10.1145/3453483.3454055
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A Additional Definitions

Here, we provide two additional definitions that are used in the proofs.

Definition 20 (Resolution with Ground Instances). Let φ and φ′ be
ground instances of CHCs.4 If

φ = (η =⇒ F(s⃗)) and φ′ = (F(s⃗) =⇒ η′),

then res(φ,φ′) := η =⇒ η′.

Otherwise, res(φ,φ′) := (⊥ =⇒ ⊥).

Here, η can also be ⊤ and η′ can also be ⊥. For non-empty sequences of ground
instances, res is defined analogously to sequences of CHCs.

4 Note that in our setting, in general a ground instance of a CHC is not a CHC, because
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Definition 21 (Liftings of Resolution). We define:

res(L) := {res(π⃗) | π⃗ ∈ L} for sets of sequences of CHCs L
res(Φ1, Φ2) := {res(φ1, φ2) | φ1 ∈ Φ1, φ2 ∈ Φ2} for sets of CHCs Φ1, Φ2

res(L1,L2) := res(res(L1), res(L2)) for sets of sequences of CHCs L1,L2

For sets of (sequences of) ground instances of CHCs, we lift res analogously.

B Auxiliary Lemmas

This appendix contains a number of auxiliary lemmas that are needed for the
proofs of our main results. We start with a lemma which essentially corresponds
to the classical lifting lemma of resolution.

Lemma 22 (Resolution Distributes over grnd). For two CHCs φ1, φ2 we
have:

grnd(res(φ1, φ2)) = {φ ∈ res(grnd(φ1), grnd(φ2)) | |=A cond(φ)}

Proof. If res(φ1, φ2) = (⊥ =⇒ ⊥), then res(π1, π2) = (⊥ =⇒ ⊥) for all ground
instances π1 of φ1 and π2 of φ2. Thus,

grnd(res(φ1, φ2)) = {φ ∈ res(grnd(φ1), grnd(φ2)) | |=A cond(φ)} = ∅.

Assume res(φ1, φ2) ̸= (⊥ =⇒ ⊥). Then we have φ1 = (η1 ∧ ψ1 =⇒ η′1),
φ2 = (η2 ∧ ψ2 =⇒ η′2), and θ = mgu(η′1, η2). Then

{φ ∈ res(grnd(φ1), grnd(φ2)) | |=A cond(φ)}
= {res(π1, π2) | π1 ∈ grnd(φ1), π2 ∈ grnd(φ2), |=A cond(φ)} (Def. 21)

= {res(φ1σ1, φ2σ2) | σ1 |=A ψ1, σ2 |=A ψ2, η
′
1σ1 = η2σ2} (def. of grnd)

= {η1σ1 =⇒ η′2σ2 | σ1 |=A ψ1, σ2 |=A ψ2, η
′
1σ1 = η2σ2} (Def. 20)

= {η1θσ =⇒ η′2θσ | σ |=A ψ1θ, σ |=A ψ2θ} (†)
= {η1θσ =⇒ η′2θσ | σ |=A ψ1θ ∧ ψ2θ}
= grnd((η1 ∧ ψ1 ∧ ψ2 =⇒ η′2)θ) (by def. of grnd)

= grnd(res(φ1, φ2)) (Def. 2)

The step marked with (†) holds as θ is the most general unifier of η′1 and η2
and as φ1 and φ2 are assumed to be variable disjoint in Def. 2. Therefore, there
exists a model σ such that xσ1 = xθσ for all x ∈ V(φ1) and xσ2 = xθσ for all
x ∈ V(φ2). ⊓⊔

Lemma 23 (Associativity of Resolution).

grnd(res(res(φ1, φ2), φ3)) = grnd(res(φ1, res(φ2, φ3)))
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Proof. Let φ ∈ grnd(res(res(φ1, φ2), φ3)). Due to Lemma 22, there are ground in-
stances φ′

1, φ
′
2, φ

′
3 of φ1, φ2, φ3 such that φ = res(res(φ′

1, φ
′
2), φ

′
3). Since φ

′
1, φ

′
2, φ

′
3

are ground, there exist ground atoms η1, . . . , η4 such that

res(res(φ′
1, φ

′
2), φ

′
3)

= res(res(η1 =⇒ η2, η2 =⇒ η3), η3 =⇒ η4)

= res(η1 =⇒ η3, η3 =⇒ η4)

= (η1 =⇒ η4)

= res(η1 =⇒ η2, η2 =⇒ η4)

= res(η1 =⇒ η2, res(η2 =⇒ η3, η3 =⇒ η4))

= res(φ′
1, res(φ

′
2, φ

′
3)) ⊓⊔

Lemma 24 (Composition of Ground Instances). If grnd(φ⃗1) ⊆ grnd(π⃗1)
and grnd(φ⃗2) ⊆ grnd(π⃗2), then

grnd(φ⃗1 :: φ⃗2) ⊆ grnd(π⃗1 :: π⃗2).

Proof.

grnd(φ⃗1 :: φ⃗2)

= grnd(res(res(φ⃗1), res(φ⃗2))) (Lemma 23)

= {φ ∈ res(grnd(φ⃗1), grnd(φ⃗2)) | |=A cond(φ)} (Lemma 22)

⊆ {φ ∈ res(grnd(π⃗1), grnd(φ⃗2)) | |=A cond(φ)} (grnd(φ⃗1) ⊆ grnd(π⃗1))

⊆ {φ ∈ res(grnd(π⃗1), grnd(π⃗2)) | |=A cond(φ)} (grnd(φ⃗2) ⊆ grnd(π⃗2))

= grnd(res(π⃗1), res(π⃗2)) (Lemma 22)

= grnd(π⃗1 :: π⃗2) (Lemma 23)

⊓⊔

Lemma 25 (Resolution Distributes over L). If Φ ⇝∗ (Π, φ⃗, B⃗,L), π⃗ ∈
sip(Π)∗, and π ∈ sip(Π), then

grnd(res(L(π⃗ :: π)))) = grnd(res(L(π⃗),L(π))).

Proof.

grnd(res(L(π⃗),L(π)))
= grnd(res(res(L(π⃗)), res(L(π)))) (Def. 21)

= grnd({res(π1, π2) | π1 ∈ res(L(π⃗)), π2 ∈ res(L(π))}) (Def. 21)

= grnd({res(π⃗1 :: π⃗2) | π⃗1 ∈ L(π⃗), π⃗2 ∈ L(π)}) (Lemma 23)

= grnd({res(π⃗) | π⃗ ∈ L(π⃗) :: L(π)})
= grnd({res(π⃗) | π⃗ ∈ L(π⃗ :: π)}) (by definition of L)
= grnd(res(L(π⃗ :: π))) (Def. 21)

⊓⊔
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C Missing Proofs

C.1 Proof of Thm. 12

The following easy lemmas and definitions are needed to prove soundness of our
approach. We first prove that adding learned clauses results in an equivalent
CHC problem.

Lemma 26 (⇝ Preserves Equivalence). If (Π, φ⃗, B⃗)⇝∗ (Π ′, φ⃗′, B⃗′), then
Π ≡A Π ′.

Proof. We only consider the case (Π, φ⃗, B⃗)⇝ (Π ′, φ⃗′, B⃗′). Then the claim also

follows for (Π, φ⃗, B⃗)⇝∗ (Π ′, φ⃗′, B⃗′) by a straightforward induction.
Accelerate adds accel(φ⃗⟲) to φ⃗ and Π. Hence, we have to prove that

σ |=A Π implies σ |=A accel(φ⃗⟲). We have:

σ |=A Π

⇐⇒ σ |=A sip(Π) (since sip(Π) ≡A Π)

=⇒ σ |=A res(φ⃗⟲) (by soundness of resolution, as φ⃗⟲ ∈ sip(Π)∗)

⇐⇒ σ |=A grnd(φ⃗⟲) (as σ’s carrier only contains ground terms over ΣA)

⇐⇒ σ |=A
⋃

n∈N≥1

grnd((φ⃗⟲)n) (by soundness of resolution)

⇐⇒ σ |=A grnd(accel(φ⃗⟲)) (by Def. 4)

⇐⇒ σ |=A accel(φ⃗⟲) (as σ’s carrier only contains ground terms over ΣA)

All other rules do not modify Π. ⊓⊔

The following relation is needed to prove the soundness of our calculus.

Definition 27 (≻Π). Given a CHC problem Π, φ⃗1, φ⃗2, φ⃗3 ∈ sip(Π)∗, and φ ∈
sip(Π), we define

φ⃗1 :: φ⃗2 :: φ⃗3 ≻Π φ⃗1 :: φ :: φ⃗3 if φ⃗2 ⊏ φ or φ⃗2 ⊑ φ ∧ |φ⃗2| > 1.

Note that the definition of ≻Π is closely related to the definition of Covered.
In particular, the trace φ⃗ :: φ⃗′ is not minimal w.r.t. ≻Π whenever Covered is
applicable.

Lemma 28. ≻Π is well founded.

Proof. Assume that there is an infinite chain

φ⃗(1) ≻Π φ⃗(2) ≻Π . . .

Since φ⃗(i) ≻Π φ⃗(i+1) implies |φ⃗(i)| ≥ |φ⃗(i+1)| and > is well founded on N, there
is an i0 such that |φ⃗(i)| = |φ⃗(i+1)| for all i ≥ i0. Thus, for each i ≥ i0, there is a
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unique ji such that φ
(i)
ji
⊏ φ(i+1)

ji
by the definition of ≻Π . Hence, there is at least

one j such that j = ji for infinitely many values i1, i2, . . . of i. Therefore, we have

φ
(i1)
j ⊏ φ(i2)

j ⊏ . . . .

Since ⊏ is transitive and φ
(ik)
j ⊏ φ

(ik′ )
j implies φ

(ik)
j ≠ φ

(ik′ )
j , {φ(ik)

j | k ∈ N>0}
is infinite. However, {φ(ik)

j | k ∈ N>0} is a subset of sip(Π), which is finite, so we
derived a contradiction. ⊓⊔

Now we are ready to prove soundness of our approach.

Theorem 12 (Soundness). If Φ⇝∗ sat, then Φ is satisfiable. If Φ⇝∗ unsat,
then Φ is unsatisfiable.

Proof. For unsat, assume Φ ⇝∗ (Π, φ⃗, B⃗) ⇝ unsat. Then φ⃗ ∈ sip(Π)∗ is a
refutation by definition of Refute. Thus, by soundness of resolution, sip(Π) and
hence also Π is unsatisfiable. By Lemma 26, we have Φ ≡A Π, and thus Φ is
unsatisfiable, too.

For sat, we use proof by contradiction. Assume that Φ is unsatisfiable and

Φ⇝ (Π(1), φ⃗(1), B⃗(1))⇝ . . .⇝ (Π(m), φ⃗(m), B⃗(m))⇝ sat. (1)

By Lemma 26, we have Φ ≡A Π(m), so Π(m) is also unsatisfiable. Thus, sip(Π(m))
is unsatisfiable as well. By completeness of binary input resolution for Horn clauses,
sip(Π(m))∗ contains at least one refutation. Thus, due to Lemma 28, sip(Π(m))∗

contains at least one ≻Π(m)-minimal refutation φ⃗.
Let ki = |φ⃗(i)| and si = (Π(i), φ⃗(i), B⃗(i)) for all 1 ≤ i ≤ m. We say that φ⃗ is

disabled in si if there is a 0 ≤ ℓ ≤ ki and a φ ∈ B
(i)
ℓ such that φ

(i)
j ≡A φj for all

1 ≤ j ≤ ℓ and φ ≡A φℓ+1. Then φ⃗ is disabled in sm. To see this, note that we

have φ1 ⊑ B
(m)
0 by definition of Prove, and φ1 ̸⊏ B(m)

0 as φ⃗ is ≻Π(m) -minimal.

Hence there is a φ ∈ B
(m)
0 such that φ1 ≡A φ, so φ⃗ is disabled in sm. Let

1 ≤ i < m be the largest index such that φ⃗ is enabled in si. Note that such an
index exists, as φ⃗ is enabled in s1, since B⃗

(1) = [∅] by definition of Init.

If si
S
⇝ si+1, then φ⃗ is disabled in si iff it is disabled in si+1, as

B
(i+1)
ki+1

= ∅ and ∀j ∈ {1, . . . , ki+1 − 1}. φ(i+1)
j = φ

(i)
j ∧B(i+1)

j = B
(i)
j

by definition of Step. Hence, si ̸
S
⇝ si+1.

If si
A
⇝ si+1, then

B
(i+1)
ki+1

= {φ(i+1)
ki+1

} and ∀j ∈ {1, . . . , ki+1 − 1}. φ(i+1)
j = φ

(i)
j ∧B(i+1)

j = B
(i)
j

by definition of Accelerate. Hence, since φ⃗ is enabled in si, but disabled in

si+1, we get φ
(i+1)
j ≡A φj for all 1 ≤ j ≤ ki+1 and φ

(i+1)
ki+1

≡A φki+1+1. So in

particular, we have φki+1 ≡A φki+1+1 ≡A φ
(i+1)
ki+1

. By definition of Acceler-

ate, there is a φ⃗⟲ ∈ sip(Π(i))∗ such that φ
(i+1)
ki+1

= accel(φ⃗⟲). Hence, we have
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[φ
(i+1)
ki+1

, φ
(i+1)
ki+1

] ⊑ φ
(i+1)
ki+1

and thus [φki+1
, φki+1+1] ⊑ φ

(i+1)
ki+1

by Def. 4, contradict-
ing ≻Π(m)-minimality of φ⃗.

If si
C
⇝ si+1 or si

B
⇝ si+1, then we have

B
(i+1)
ki+1

= B
(i)
ki+1

∪ {φ(i)
ki
},

∀j ∈ {1, . . . , ki+1}. φ(i+1)
j = φ

(i)
j , and

∀j ∈ {1, . . . , ki+1 − 1}. B(i+1)
j = B

(i)
j

by definition of bt. Since φ⃗ is enabled in si, but disabled in si+1, we get φ
(i+1)
j =

φ
(i)
j ≡A φj for all 1 ≤ j ≤ ki+1 = ki − 1 and φ

(i)
ki

≡A φki . So in particular,

we have φ
(i)
j ≡A φj for all 1 ≤ j ≤ ki. If si

C
⇝ si+1, then the definition of

Covered implies that φ⃗(i) is not ≻Π(i) -minimal, contradicting ≻Π(i) -minimality
and therefore also ≻Π(m)-minimality of φ⃗.

If si
B
⇝ si+1, then all rules and queries are inactive in the state si by definition

of Backtrack. Thus, we have φki+1 ⊑ B
(i)
ki
. Moreover, as φ⃗ is enabled in si,

we have φki+1 ̸≡A φ for all φ ∈ B
(i)
ki
. Thus, we get φki+1 ⊏ B

(i)
ki
, contradicting

≻Π(m) -minimality of φ⃗. ⊓⊔

C.2 Proof of Thm. 13

Theorem 13 (Normal Forms). If Φ⇝+ s where s is in normal form w.r.t.
⇝, then s ∈ {sat, unsat}.

Proof. Let s = (Π, φ⃗, B⃗). If φ⃗ is empty, then Step or Prove is applicable. If φ⃗
is non-empty, then either Step or Backtrack is applicable. Hence, s is not in
normal form. ⊓⊔

C.3 Proof of Thm. 15

Theorem 15 (Refutational Completeness). If Φ is unsatisfiable, then

Φ⇝∗
rs unsat.

Proof. Due to completeness of binary input resolution for Horn Clauses, there is
a refutation φ⃗ ∈ sip(Φ)∗. We inductively define a ⇝rs -derivation of the form

Φ⇝rs (Φ, [], [∅]) = (Π0, φ⃗0, B⃗0) = s0

⇝rs (Φ, [φ1], [∅,∅]) = (Π1, φ⃗1, B⃗1) = s1

⇝rs (Π2, φ⃗2, B⃗2) = s2

⇝rs . . .

⇝rs (Πk, φ⃗k, B⃗k) = sk

⇝rs unsat
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such that Ji = {j | 1 ≤ j ≤ |φ⃗|, [φm]jm=1 ⊑ φ⃗i} is non-empty for each 1 ≤ i ≤ k.
Here, φm are the elements of φ⃗. Then the claim follows immediately. In the
following, ji denotes max(Ji). Given the state si = (Πi, φ⃗i, B⃗i), we distinguish
the following cases:

(1) If φ⃗i has a minimal recursive suffix φ⃗⟲ such that accel(φ⃗⟲) is not redundant,
then we apply Accelerate, resulting in the state si+1.

(2) Otherwise, let c ∈ N≥1 be the maximal number such that [φm]
ji+c
m=ji+1 ⊑

sip(Πi). Then we apply Step with some

π ∈ max
⊏

{
π ∈ sip(Πi)

∣∣∣ [φm]ji+cm=ji+1 ⊑ π
}

(which may not be unique, as ⊏ is a partial order), resulting in the state si+1

with ji+1 = ji + c.

Note that a clause π as in (2) always exists. The reason is that [φm]ji+1
m=ji+1 ⊑ φji+1

and φji+1 ∈ sip(Πi). Hence, there always exists a c ∈ N≥1 with [φm]
ji+c
m=ji+1 ⊑

sip(Πi).
To show Φ⇝ s1 ⇝ . . .⇝ sk, it remains to show that the clause π in (2) is

not blocked. To this end, we prove

If π is blocked in state si, then [φm]ji+cm=ji+1 ̸⊑ π for all c ≥ 1.

This implies that the clause π in (2) is not blocked and thus Step is applicable.
Assume that π is blocked in state si. Then π is the last element of the trace
by definition of Accelerate, and we have res(π, π) ⊑ π, since this holds for
every accelerated clause π. Moreover, ji = ji−1 + c′, where c′ ≥ 0 is the maximal

number such that [φm]
ji−1+c

′

m=1 ⊑ φ⃗i. Hence, there is a suffix π⃗ of [φm]
ji
m=1 such

that |π⃗| ≥ c′, π⃗ ⊑ π, and

π⃗ :: [φm]ji+c
′′

m=ji+1 ̸⊑ π for all c′′ > 0 (2)

by maximality of c′. Assume that there is a c ∈ N with [φm]
ji+c
m=ji+1 ⊑ π. Then

we have
π⃗ :: [φm]ji+cm=ji+1 ⊑ res(π, π) ⊑ π

and hence (2) implies c = 0.
Hence, we have Φ ⇝ s0 ⇝ . . . ⇝ sk. Next, we prove that this sequence is

reasonable. We handle each item of Def. 14 individually.

Def. 14 (1): This case never applies. To show this, we prove that i′ < i, Πi′ =
Πi, and φ⃗i = φ⃗i′ :: π⃗

′ implies π⃗′ ̸⊏ sip(Πi) if |π⃗′| = 1, and π⃗′ ̸⊑ sip(Πi) if
|π⃗′| > 1. Assume Πi′ = Πi and φ⃗i = φ⃗i′ :: π⃗

′ for some i′ < i. Then Πi′ = Πi

implies that si′+1, ..., si were constructed via (2). Thus, if π′
1 is the first CHC

of the sequence π⃗′, then we have [φm]
ji′+c
m=ji′+1 ⊑ π′

1 for some c ∈ N≥1, which

has to be maximal according to (2). If |π⃗′| = 1, then π⃗′ = π′
1 ⊏ sip(Πi) would

contradict the requirement in (2) that π′
1 is maximal w.r.t. ⊏. Assume |π⃗′| > 1.
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As si′+1 was also constructed via (2), |π⃗′| > 1 implies ji > ji′+1. Hence, we
get [φm]

ji
m=ji′+1 ̸⊑ sip(Πi), as ji > ji′+1 = ji′ + c, but c is the maximal

natural number such that [φm]
ji′+c
m=ji′+1 ⊑ Πi. Since [φm]

ji
m=ji′+1 ⊑ π⃗′, this

implies π⃗′ ̸⊑ sip(Πi).
Def. 14 (2): Trivial, as (1) is applied with higher preference than (2).
Def. 14 (3): Trivial due to (1).
Def. 14 (4): The first Step in the constructed ⇝-sequence uses a CHC φ such

that we have φ⃗′ ⊑ φ for a non-empty prefix φ⃗′ of φ⃗. Since φ⃗ is a refutation,
its first element is a fact or a conditional empty clause. Hence, res(φ⃗′) is a
fact or a conditional empty clause, too. Thus, φ must be a fact or conditional
empty clause as well.

Next, we prove that each Ji is non-empty, i.e., that for each 1 ≤ i ≤ k, there
is a 1 ≤ j ≤ |φ⃗| such that [φm]

j
m=1 ⊑ φ⃗i. We use induction on 1 ≤ i ≤ k, where

the case i = 1 is immediate due to the choice of π in (2). Let i > 1. First assume
that (1) was applied to the state si−1 and φ⃗i−1 = φ⃗′

i′ :: φ⃗
⟲ for some i′ ∈ N≥1

where i′ < i− 1. Then by the induction hypothesis, Ji−1 is non-empty and thus
ji−1 exists. We get:

grnd([φm]
ji−1

m=1)

⊆ grnd(φ⃗i−1) (IH)

= grnd(φ⃗i′ :: φ⃗
⟲) (as φ⃗i−1 = φ⃗′

i′ :: φ⃗
⟲)

⊆ grnd(φ⃗i′ :: accel(φ⃗
⟲)) (Lemma 24, as φ⃗⟲ ⊑ accel(φ⃗⟲))

= grnd(φ⃗i)

Hence, ji−1 ∈ Ji, i.e., Ji is non-empty. If (2) was applied to the state si−1, then
Ji is trivially non-empty due to the choice of π in (2).

Finally, note that the resulting sequence Φ ⇝ s0 ⇝ . . . ⇝ sk is finite: For
(2), we have ji < ji+1, and the sequence j1, j2, . . . is bounded by |φ⃗|. For (1), we
have ji ≤ ji+1, but the (finite) number of recursive infixes of φ⃗ that are not yet
redundant is decremented. Hence, we get a lexicographic termination argument,
which ensures that there is an sk with jk = |φ⃗|. This implies sk ⇝ unsat. ⊓⊔

C.4 Proof of Lemma 17

Lemma 17. If Φ⇝∗
rs (Π, φ⃗, B⃗,L) and π ∈ sip(Π), then grnd(π) = grnd(L(π)).

Proof. We use induction on the length of the⇝rs -derivation. If Φ⇝rs (Π, φ⃗, B⃗,L),
then the claim follows from the definition of Init. Assume

Φ⇝∗
rs (Π ′, φ⃗′, B⃗′,L′)⇝rs (Π, φ⃗, B⃗,L).

If the last step is not Accelerate, then the claim follows from the induction
hypothesis. Assume that the last step isAccelerate. Then we haveΠ = Π ′∪{φ}
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and L = L′ ⊎ φ 7→ L′(φ⃗⟲)+. If π ≠ φ, then the claim follows from the induction
hypothesis, so assume π = φ. Then it remains to show

grnd(φ) = grnd(L(φ)) = grnd(L′(φ⃗⟲)+), where φ = accel(φ⃗⟲). (3)

By the induction hypothesis, we have grnd(φ′) = grnd(L′(φ′)) for all φ′ ∈ φ⃗⟲.
We first show

grnd(φ⃗⟲) = grnd(L′(φ⃗⟲)). (4)

To this end, we show that π⃗ ∈ sip(Π ′)∗, π ∈ sip(Π ′), grnd(π⃗) = grnd(L′(π⃗)) and
grnd(π) = grnd(L′(π)) imply grnd(π⃗ :: π) = grnd(L′(π⃗ :: π)). Then (4) follows by
a straightforward induction over |φ⃗⟲|. We have:

grnd(π⃗ :: π)

= {φ ∈ res(grnd(π⃗), grnd(π)) | |=A cond(φ)} (Lemma 22)

= {φ ∈ res(grnd(L′(π⃗)), grnd(L′(π))) | |=A cond(φ)} (IH)

= grnd(res(L′(π⃗),L′(π))) (Lemma 22)

= grnd(res(L′(π⃗ :: π))) (Lemma 25)

= grnd(L′(π⃗ :: π)) (by the definition of grnd)

Now we prove (3):

grnd(accel(φ⃗⟲))

=
⋃

n∈N≥1

grnd((φ⃗⟲)n) (Def. 4)

=
⋃

n∈N≥1

{φ ∈ grnd(φ⃗⟲)n | |=A cond(φ)} (Lemma 22)

=
⋃

n∈N≥1

{φ ∈ grnd(L′(φ⃗⟲))n | |=A cond(φ)} (by (4))

=
⋃

n∈N≥1

grnd(L′(φ⃗⟲)n) (Lemma 22)

= grnd(L′(φ⃗⟲)+) (by the definition of Kleene plus)

⊓⊔

C.5 Proof of Thm. 18

Theorem 18 (Non-Termination). There exists a satisfiable CHC problem Φ
such that Φ ̸⇝∗

rs sat. Thus, ⇝rs does not terminate.

Proof.

Proof Idea:

We will construct a satisfiable CHC problem Φ such that Φ ̸⇝∗
rs sat. Since Φ is

satisfiable, we also have Φ ̸⇝∗
rs unsat by the soundness of our calculus (Thm. 12).
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But by Thm. 13, the only normal forms w.r.t. ⇝ (and also w.r.t. ⇝rs) are sat
and unsat. Therefore, ⇝rs does not terminate when starting with Φ. In fact, it is
not even normalizing (i.e., there does not exist any derivation to a normal form).

Construction of Φ:

To construct Φ, we consider the Thue-Morse sequence [vi]i∈N [44]. Let wi :=
vi+1 − vi. The resulting infinite sequence [wi]i∈N over the alphabet {−1, 0, 1} is
well-known to be square-free, i.e., it does not contain a non-empty infix u :: u [45].
Let Φ be a satisfiable CHC problem that contains

⊤ =⇒ ThueMorse(0, 1), (φf )

the following CHCs ΦThueMorse,

ThueMorse(I,X) ∧X = −1 ∧ J = I + 1 =⇒ Next(J)

ThueMorse(I,X) ∧X = 0 ∧ J = I + 1 =⇒ Next(J)

ThueMorse(I,X) ∧X = 1 ∧ J = I + 1 =⇒ Next(J),

and CHCs ΦNext that are equivalent to

Next(I) ∧X = wI =⇒ ThueMorse(I,X). (5)

Note that ΦNext exists, since [wi]i∈N is computable and linear CHCs are Turing
complete. W.l.o.g., we assume sip(Φ) = Φ in the sequel. Then for each n ∈ N,
there is a unique sequence

φ⃗n ∈ φf :: (ΦThueMorse :: Φ
+
Next)

n

such that grnd(φ⃗n) = {⊤ =⇒ ThueMorse(n,wn)}. Hence, ⟨φ⃗n⟩ΦThueMorse
(i.e., the

sequence that results from φ⃗n by omitting all CHCs that are not contained in
ΦThueMorse) is square-free.

Contradicting Φ ⇝∗
rs sat:

Assume

Φ⇝rs s1 ⇝rs . . .⇝rs sk = (Π, [], [B],L)⇝rs sat.

1. Finitely many square-free words in ⟨L(Π)⟩ΦThueMorse :

We first prove that any finite union L =
⋃c
i=1 Li of languages Li over a finite

alphabet that are built from singleton languages, concatenation, and Kleene plus
just contains finitely many square-free words. To this end, it suffices to prove
that each Li contains at most one square-free word. Let 1 ≤ i ≤ c be arbitrary
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but fix. We use induction on Li. If Li is a singleton language, then the claim is
trivial. If Li = L′ :: L′′, then the square-free words in Li are a subset of

{w′ :: w′′ | w′ ∈ L′, w′′ ∈ L′′, w′ and w′′ are square-free}. (6)

By the induction hypothesis, there is at most one square-free word w′ ∈ L′′ and
at most one square-free word w′′ ∈ L′′. Thus, the size of (6) is at most one. If
Li = (L′)+, then Li contains the same square-free words as L′. To see this, let
w ∈ (L′)+ be square-free. Then there are n ∈ N≥1, v1, . . . , vn ∈ L′ such that
v1 :: . . . :: vn = w. Since w is square-free, each vi must be square-free, too. As
L′ contains at most one square-free word by the induction hypothesis, we get
v1 = . . . = vn. Since w is square-free, this implies n = 1 (or that w and the vi
are the empty word).

Note that
L(Π) =

⋃
π∈Π

L(π)

is a finite union of languages over Φ that are built from singleton languages,
concatenation, and Kleene plus. Then

⟨L(Π)⟩ΦThueMorse
:= {⟨w⟩ΦThueMorse

| w ∈ L(Π)}

is a finite union of languages over ΦThueMorse that are built from singleton lan-
guages, concatenation, and Kleene plus. Thus, ⟨L(Π)⟩ΦThueMorse

just contains finitely
many square-free words.

2. Extending Φ to an unsatisfiable CHC problem Φ′:

Thus, there is an m > 1 such that ⟨φ⃗m⟩ΦThueMorse
/∈ ⟨L(Π)⟩ΦThueMorse

. To see that,
note that the words ⟨φ⃗n⟩ΦThueMorse

are square-free and pairwise different, but
⟨L(Π)⟩ΦThueMorse

only contains finitely many square-free words. Let

φq := ThueMorse(I,X) ∧ I = m ∧X = wm =⇒ ⊥,
Φ′ := Φ ∪ {φq}, and

si := (Πi, π⃗i, B⃗i,Li) for each i ∈ [1, k].

3. Φ′ ⇝∗ sat:

Then we get
Φ′ ⇝rs s

′
1 ⇝rs . . .⇝rs s

′
k ⇝rs sat

where for each 1 ≤ i ≤ k, we have

Π ′
i := Πi ∪ {φq}, L′

i := Li ⊎ φq 7→ {φq}, and s′i := (Π ′
i, π⃗i, B⃗i,L′

i).

To prove this, it suffices to show Φ′ ⇝k
rs s

′
k, as we trivially have s′k ⇝ sat since

s′k and sk contain the same facts and no conditional empty clauses. To this end,
we prove Φ′ ⇝i

rs s
′
i for all 1 ≤ i ≤ k by induction on i.
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3.1. Induction Base: For i = 1, the only applicable rule is Init, i.e., we have

Φ
I
⇝rs (Φ, [], [∅], φ 7→ {φ}) = (Π1, π⃗1, B⃗1,L1) and

Φ′ I
⇝rs (Φ′, [], [∅], φ 7→ {φ}) = (Π ′

1, π⃗1, B⃗1,L′
1).

3.2. Induction Step – Trivial Cases: For i > 1, we perform a case analysis
on the rule that is used for the step si−1 ⇝rs si. Init does not apply to si−1. For
Step, if φ was active in the ith step starting from Φ, then it is also active in the
ith step starting from Φ′, as B⃗i−1 is the same in both derivations. Moreover, we

get the same set B and thus, the same B⃗i, since the same clauses are learned in
the first i− 1 (identical) steps of both ⇝rs -derivations. For Covered, we have
φ⃗′ ⊏ Πi iff φ⃗

′ ⊏ Π ′
i, and φ⃗

′ ⊑ Πi iff φ⃗
′ ⊑ Π ′

i. The reason is that every model of
Φ is also a model of φ⃗′ and thus φ⃗′ ⊏ φq would imply unsatisfiability of Φ, but Φ
is satisfiable. For the same reason, we have accel(φ⃗⟲) ⊑ Πi iff accel(φ⃗⟲) ⊑ Π ′

i in
the case of Accelerate.

3.3. Induction Step – Backtrack: For Backtrack, we have to show that φq
is inactive. Since φq is clearly not blocked, we have to show that cond(π⃗i−1 :: φq)
is unsatisfiable. Assume otherwise. Then we have:

φ⃗m = φf :: φ⃗ for some φ⃗ ∈ Φ∗

π⃗i−1 = φf :: π⃗ :: π for some π⃗ :: π ∈ Π+

⊤ =⇒ ThueMorse(m,wm) ∈ grnd(π⃗i−1)

ThueMorse(0, 1) =⇒ ThueMorse(m,wm) ∈ grnd(π⃗ :: π)

To see why the equality π⃗i−1 = φf :: π⃗ :: π holds (i.e., why |π⃗i−1| > 1), note that
π⃗i−1 = [φf ] would imply m = 0, contradicting m > 1 (i.e., then cond(π⃗i−1 :: φq)
would be unsatisfiable).

Step 3.3.1. We show φ⃗ ∈ L(Π): Note that some clause from ΦThueMorse is blocked
in state si−1 (as Backtrack applies to si−1). The reason is that the head symbol
of the last clause in π⃗i−1 is ThueMorse. Thus, one of the clauses φ′ of ΦThueMorse

would be applicable (i.e., cond(π⃗i−1 :: φ′) is satisfiable). But since the clause φ′

is inactive, it must be blocked. Thus, there is a j < i − 1 such that π⃗j = π⃗i−1

and no element of ΦThueMorse is blocked (right after adding π to the trace via
Accelerate or Step). We cannot have j = i− 1 because when adding π to the
trace via Accelerate or Step, we reach a state where no clause of ΦThueMorse is
blocked.

Case 3.3.1.1. π⃗ contains clauses with body symbol ThueMorse: If π⃗ contains c > 0
clauses with body symbol ThueMorse, then π1 is one of them, as π⃗j starts with
φf . Thus, π⃗ :: π is recursive, i.e., π⃗j has a recursive suffix with ground instance

ThueMorse(0, 1) =⇒ ThueMorse(m,wm). (7)
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If accel(π⃗ :: π) ⊑ Πj , then Πj ⊆ Π contains a clause with ground instance (7).
Otherwise, a reasonable strategy needs to apply Accelerate in state sj .

Then we get accel(π⃗ :: π) ⊑ Π by induction on c: If c = 1, then accel(π⃗ :: π) ∈
Πj+1 ⊆ Π. If c > 1 and accel(π⃗ :: π) ̸⊑ Πj+1, then π⃗j+1 has a recursive suffix
φ⃗⟲ ⊑ π⃗ :: π (due to Lemma 23) such that accel(φ⃗⟲) is not redundant, and hence
a reasonable strategy again needs to apply Accelerate in state sj+1. Thus,
accel(π⃗ :: π) ⊑ Π follows from the induction hypothesis

So Π contains a clause with ground instance (7). Thus, we have

(7) ∈ grnd(Π)
Lemma 17

= grnd(L(Π)). (8)

Note that for all φ⃗′ ∈ Φ∗, we have

(7) ∈ grnd(φ⃗′) iff φ⃗ = φ⃗′

since otherwise, φ⃗m would not be unique. Hence, (8) implies φ⃗ ∈ L(Π).

Case 3.3.1.2. π⃗ contains no clause with body symbol ThueMorse: Now consider
the case that π⃗ does not contain a clause with body symbol ThueMorse. As π⃗j
starts with φf , this implies π⃗ = []. So we get

(7) ∈ grnd(π)
Lemma 17

= grnd(L(π))
π∈Π
⊆ grnd(L(Π)).

Hence, φ⃗ ∈ L(Π) follows as in the previous case.

Step 3.3.2. We show that φ⃗ ∈ L(Π) implies ⟨φ⃗m⟩ΦThueMorse
∈ ⟨L(Π)⟩ΦThueMorse

: We
have shown φ⃗ ∈ L(Π). Hence, we have

⟨φ⃗⟩ΦThueMorse
∈ ⟨L(Π)⟩ΦThueMorse

.

As ⟨φ⃗⟩ΦThueMorse
= ⟨φ⃗m⟩ΦThueMorse

, this contradicts the observation

⟨φ⃗m⟩ΦThueMorse
/∈ ⟨L(Π)⟩ΦThueMorse

.

4. Φ′ ⇝∗ sat contradicts Soundness

This contradicts the soundness of ⇝rs , because Φ
′ = Φ ∪ {φq} is unsatisfiable.

The reason is that σ |=A Φ implies σ |=A ThueMorse(n,wn) for all n ∈ N. Hence,
our assumption was wrong and we have Φ ̸⇝∗

rs sat. ⊓⊔
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