Skip to main content

Mining Specification Parameters for Multi-class Classification

  • Conference paper
  • First Online:
Runtime Verification (RV 2023)

Abstract

We present a method for mining parameters of temporal specifications for signal classification. Given a parametric formula and a set of labeled traces, we find one parameter valuation for each class and use it to instantiate the specification template. The resulting formula characterizes the signals in a class by discriminating them from signals of other classes. We propose a two-step approach: first, for each class, we approximate its validity domain, which is the region of the valuations that render the formula satisfied. Second, we select from each validity domain the valuation that maximizes the distance from the validity domain of other classes. We provide a statistical guarantee that the selected parameter valuation is at a bounded distance from being optimal. Finally, we validate our approach on three case studies from different application domains.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 956123 and it is partially funded by the TU Wien-funded Doctoral College for SecInt: Secure and Intelligent Human-Centric Digital Technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/eleonoranesterini/MiniPaSTeL.

References

  1. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of temporal properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_12

    Chapter  Google Scholar 

  2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-Driven Statistical Learning of Temporal Logic Properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_3

    Chapter  MATH  Google Scholar 

  3. Bartocci, E., Mateis, C., Nesterini, E., Nickovic, D.: Survey on mining signal temporal logic specifications. Inf. Comput. 289(Part), 104957 (2022). https://doi.org/10.1016/j.ic.2022.104957

  4. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree approach to data classification using signal temporal logic. In: Proceedings of HSCC 2016, pp. 1–10. ACM (2016). https://doi.org/10.1145/2883817.2883843

  5. Bortolussi, L., Gallo, G.M., Křetínský, J., Nenzi, L.: Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: TACAS 2022. LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_15

    Chapter  Google Scholar 

  6. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Temporal logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_30

    Chapter  Google Scholar 

  7. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of CoRL. PMLR, vol. 78, pp. 1–16, 2017. http://proceedings.mlr.press/v78/dosovitskiy17a.html

  9. Ghidellaand, J., Mosterman, P.: Requirements-based testing in aircraft control design. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, pp. 1–11 (2005). https://doi.org/10.2514/6.2005-5886

  10. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic properties in model-based design for cyber-physical systems. Int. J. Softw. Tools Technol. Transf. 20(1), 79–93 (2017). https://doi.org/10.1007/s10009-017-0447-4

    Article  Google Scholar 

  11. Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N.: TeLEx: learning signal temporal logic from positive examples using tightness metric. Formal Methods Syst. Des. 54(3), 364–387 (2019). https://doi.org/10.1007/s10703-019-00332-1

    Article  MATH  Google Scholar 

  12. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anomalous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017). https://doi.org/10.1109/TAC.2016.2585083

    Article  MathSciNet  MATH  Google Scholar 

  13. Linard, A., Torre, I., Leite, I., Tumova, J.: Inference of multi-class STL specifications for multi-label human-robot encounters. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1305–1311 (2022). https://doi.org/10.1109/IROS47612.2022.9982088

  14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  15. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M., Donzé, A.: Interpretable classification of time-series data using efficient enumerative techniques. In: Proceedings of HSCC 2020, pp. 9:1–9:10. ACM (2020). https://doi.org/10.1145/3365365.3382218

  16. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_20

    Chapter  Google Scholar 

  17. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_34

    Chapter  Google Scholar 

  18. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  19. Xu, Z., Julius, A.A.: Census signal temporal logic inference for multiagent group behavior analysis. IEEE Trans. Autom. Sci. Eng. 15(1), 264–277 (2018). https://doi.org/10.1109/TASE.2016.2611536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Nesterini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, E.A., Bartocci, E., Mateis, C., Nesterini, E., Ničković, D. (2023). Mining Specification Parameters for Multi-class Classification. In: Katsaros, P., Nenzi, L. (eds) Runtime Verification. RV 2023. Lecture Notes in Computer Science, vol 14245. Springer, Cham. https://doi.org/10.1007/978-3-031-44267-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44267-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44266-7

  • Online ISBN: 978-3-031-44267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics