Skip to main content

Invited Paper: Detection of False Data Injection Attacks in Power Systems Using a Secured-Sensors and Graph-Based Method

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2023)

Abstract

False data injection (FDI) attacks pose a significant threat to the reliability of power system state estimation (PSSE). Recently, graph signal processing (GSP)-based detectors have been shown to enable the detection of well-designed cyber attacks named unobservable FDI attacks. However, current detectors, including GSP-based detectors, do not consider the impact of secured sensors on the detection process; thus, they may have limited power, especially in the low signal-to-noise ratio (SNR) regime. In this paper, we propose a novel FDI attack detection method that incorporates both knowledge of the locations of secured sensors and the GSP properties of power system states (voltages). We develop the secured-sensors-and-graph-Laplacian-based generalized likelihood ratio test (SSGL-GLRT) that integrates the secured data and the graph smoothness properties of the state variables. Furthermore, we introduce a generalization of the method that allows the use of different high-pass GSP filters together with prior knowledge of the locations of the secured sensors. Then, we develop the SSGL-GLRT for a distributed PSSE based on the alternating direction method of multipliers (ADMM). Numerical simulations demonstrate that the proposed method significantly improves the probability of detecting FDI attacks compared to existing GSP-based detectors, achieving an increase of up to 30% in the detection probability for the same false alarm rate by integrating secured sensor location information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abur, A., Gomez-Exposito, A.: Power System State Estimation: Theory and Implementation. Marcel Dekker (2004)

    Google Scholar 

  2. Bi, S., Zhang, Y.J.: Graphical methods for defense against false-data injection attacks on power system state estimation. IEEE Trans. Smart Grid 5(3), 1216–1227 (2014)

    Article  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  4. Dabush, L., Kroizer, A., Routtenberg, T.: State estimation in partially observable power systems via graph signal processing tools. Sens. (MDPI) 23(3), 1387 (2023)

    Article  Google Scholar 

  5. Dabush, L., Routtenberg, T.: Detection of false data injection attacks in unobservable power systems by Laplacian regularization. In: IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 415–419 (2022)

    Google Scholar 

  6. Deng, R., Xiao, G., Lu, R.: Defending against false data injection attacks on power system state estimation. IEEE Trans. Ind. Informat. 13(1), 198–207 (2015)

    Article  Google Scholar 

  7. Dong, X., Thanou, D., Frossard, P., Vandergheynst, P.: Learning Laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process. 64(23), 6160–6173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drayer, E., Routtenberg, T.: Detection of false data injection attacks in power systems with graph Fourier transform. In: Global Conference on Signal and Information Processing (GlobalSIP), pp. 890–894 (2018)

    Google Scholar 

  9. Drayer, E., Routtenberg, T.: Detection of false data injection attacks in smart grids based on graph signal processing. IEEE Syst. J. (2019)

    Google Scholar 

  10. Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., Han, Z.: Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 11(3), 1644–1652 (2017)

    Article  Google Scholar 

  11. Hasnat, M.A., Rahnamay-Naeini, M.: A graph signal processing framework for detecting and locating cyber and physical stresses in smart grids. IEEE Trans. Smart Grid 13(5), 3688–3699 (2022)

    Article  Google Scholar 

  12. He, Y., Mendis, G.J., Wei, J.: Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017)

    Article  Google Scholar 

  13. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  14. Jia, L., Kim, J., Thomas, R.J., Tong, L.: Impact of data quality on real-time locational marginal price. IEEE Trans. Power Syst. 29(2), 627–636 (2014)

    Article  Google Scholar 

  15. Kalofolias, V.: How to learn a graph from smooth signals. J. Mach. Learn. Res. (JMLR) (2016)

    Google Scholar 

  16. Kay, S.M.: Fundamentals of Statistical Signal Processing: Detection Theory, vol. 2. Prentice Hall PTR, Englewood Cliffs (1998)

    Google Scholar 

  17. Kekatos, V., Giannakis, G.B.: Distributed robust power system state estimation. IEEE Trans. Power Syst. 28(2), 1617–1626 (2012)

    Article  Google Scholar 

  18. Kim, J., Bhela, S., Anderson, J., Zussman, G.: Identification of intraday false data injection attack on DER dispatch signals. In: 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 40–46 (2022)

    Google Scholar 

  19. Kim, J., Tong, L.: On phasor measurement unit placement against state and topology attacks. In: SmartGridComm, pp. 396–401 (2013)

    Google Scholar 

  20. Kim, T.T., Poor, H.V.: Strategic protection against data injection attacks on power grids. IEEE Trans. Smart Grid 2(2), 326–333 (2011)

    Article  Google Scholar 

  21. Kosut, O., Jia, L., Thomas, R.J., Tong, L.: Malicious data attacks on smart grid state estimation: Attack strategies and countermeasures. In: 2010 First IEEE International Conference on Smart Grid Communications, pp. 220–225 (2010)

    Google Scholar 

  22. Kroizer, A., Routtenberg, T., Eldar, Y.C.: Bayesian estimation of graph signals. IEEE Trans. Signal Process. 70, 2207–2223 (2022)

    Article  MathSciNet  Google Scholar 

  23. Liang, G., Zhao, J., Luo, F., Weller, S.R., Dong, Z.Y.: A review of false data injection attacks against modern power systems. IEEE Trans. Smart Grid 8(4), 1630–1638 (2017)

    Article  Google Scholar 

  24. Lin, J., Yu, W., Yang, X., Xu, G., Zhao, W.: On false data injection attacks against distributed energy routing in smart grid. In: International Conference on Cyber-Physical Systems, pp. 183–192. IEEE Computer Society (2012)

    Google Scholar 

  25. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), 13 (2011)

    Article  Google Scholar 

  26. Minot, A., Lu, Y.M., Li, N.: A distributed Gauss-Newton method for power system state estimation. IEEE Trans. Power Syst. 31(5), 3804–3815 (2015)

    Article  Google Scholar 

  27. Monticelli, A.: State Estimation in Electric Power Systems: A Generalized Approach, pp. 39–61, 91–101, 161–199. Springer, Boston (1999)

    Google Scholar 

  28. Morgenstern, G., Routtenberg, T.: Structural-constrained methods for the identification of unobservable false data injection attacks in power systems. IEEE Access 10, 94169–94185 (2022)

    Article  Google Scholar 

  29. Morgenstern, G., Kim, J., Anderson, J., Zussman, G., Routtenberg, T.: Protection against graph-based false data injection attacks on power systems (2023). https://arxiv.org/abs/2304.10801

  30. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M.F., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

    Article  Google Scholar 

  31. Primadianto, A., Lu, C.N.: A review on distribution system state estimation. IEEE Trans. Power Syst. 32(5), 3875–3883 (2016)

    Article  Google Scholar 

  32. Ramakrishna, R., Scaglione, A.: Grid-graph signal processing (Grid-GSP): a graph signal processing framework for the power grid. IEEE Trans. Signal Process. 69, 2725–2739 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramakrishna, R., Scaglione, A.: Detection of false data injection attack using graph signal processing for the power grid. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–5. IEEE (2019)

    Google Scholar 

  34. Routtenberg, T., Eldar, Y.C.: Centralized identification of imbalances in power networks with synchrophasor data. IEEE Trans. Power Syst. 33(2), 1981–1992 (2017)

    Article  Google Scholar 

  35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shaked, S., Routtenberg, T.: Identification of edge disconnections in networks based on graph filter outputs. IEEE Trans. Signal Inf. Process. Netw. 7, 578–594 (2021)

    MathSciNet  Google Scholar 

  38. Shereen, E., Ramakrishna, R., Dán, G.: Detection and localization of PMU time synchronization attacks via graph signal processing. IEEE Trans. Smart Grid 13(4), 3241–3254 (2022)

    Article  Google Scholar 

  39. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IIEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  40. Soltan, S., Mazauric, D., Zussman, G.: Analysis of failures in power grids. IEEE Control Netw. Syst. 4(2), 288–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Soltan, S., Yannakakis, M., Zussman, G.: Power grid state estimation following a joint cyber and physical attack. IEEE Trans. Control. Netw. Syst. 5(1), 499–512 (2016)

    Article  MATH  Google Scholar 

  42. Soltan, S., Yannakakis, M., Zussman, G.: React to cyber attacks on power grids. IEEE Trans. Netw. Sci. Eng. 6(3), 459–473 (2018)

    Article  MathSciNet  Google Scholar 

  43. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the electric power grid. Proc. IEEE 100(1), 210–224 (2011)

    Article  Google Scholar 

  44. Veith, E., Fischer, L., Tröschel, M., Nieße, A.: Analyzing cyber-physical systems from the perspective of artificial intelligence. In: Proceedings of the 2019 International Conference on Artificial Intelligence, Robotics and Control, pp. 85–95 (2019)

    Google Scholar 

  45. Verdoja, F., Grangetto, M.: Graph Laplacian for image anomaly detection. Mach. Vision Appl. 31(1–2), 11 (2020)

    Article  Google Scholar 

  46. Vuković, O., Dán, G.: Security of fully distributed power system state estimation: detection and mitigation of data integrity attacks. IEEE J. Sel. Areas Commun. 32(7), 1500–1508 (2014)

    Article  Google Scholar 

  47. Xie, L., Mo, Y., Sinopoli, B.: Integrity data attacks in power market operations. IEEE Trans. Smart Grid 2(4), 659–666 (2011)

    Article  Google Scholar 

  48. Yuan, Y., Li, Z., Ren, K.: Quantitative analysis of load redistribution attacks in power systems. IEEE Trans. Parallel Distrib. Syst. 23(9), 1731–1738 (2012)

    Article  Google Scholar 

  49. Zhu, X., Kandola, J.S., Lafferty, J., Ghahramani, Z.: Graph kernels by spectral transforms (2006)

    Google Scholar 

  50. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Next Generation Internet (NGI) program, the Jabotinsky Scholarship from the Israel Ministry of Technology and Science, the Israel Ministry of National Infrastructure, Energy, National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00210018), NSF grants CNS-2148128, EPCN-2144634, EPCN-2231350, and by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Solar Energy Technology Office Award Number DE-EE0008769. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Morgenstern .

Editor information

Editors and Affiliations

Appendix: Concavity of \(\mathcal {Q}(\boldsymbol{\theta },\mathbf{{a}})\)

Appendix: Concavity of \(\mathcal {Q}(\boldsymbol{\theta },\mathbf{{a}})\)

In order to show that the function \(\mathcal {Q}(\boldsymbol{\theta },\mathbf{{a}})\) from (8) is a concave function w.r.t \(\boldsymbol{\theta }\) and \(\mathbf{{a}}\), we need to show that the Hessian matrix of the second-order partial derivatives of \(-\mathcal {Q}(\boldsymbol{\theta },\mathbf{{a}})\) is a positive semidefinite matrix. It can be seen that the Hessian matrix of \(-\mathcal {Q}(\boldsymbol{\theta },\mathbf{{a}})\) w.r.t. the vector \([\boldsymbol{\theta }^T,\mathbf{{a}}^T]^T\) is

$$\begin{aligned} \begin{pmatrix} \mathbf{{H}}^T\mathbf{{R}}^{-1}\mathbf{{H}}+\mathbf{{B}}&{} \mathbf{{H}}^T\mathbf{{R}}^{-1} \\ \mathbf{{R}}^{-1}\mathbf{{H}}&{} \mathbf{{R}}^{-1}+{\mathbf{{M}}} \end{pmatrix} = \begin{pmatrix} \mathbf{{H}}^T\mathbf{{R}}^{-1}\mathbf{{H}}&{} \mathbf{{H}}^T\mathbf{{R}}^{-1} \\ \mathbf{{R}}^{-1}\mathbf{{H}}&{} \mathbf{{R}}^{-1} \end{pmatrix} + \begin{pmatrix} \mathbf{{B}}&{} \mathbf{{0}}\\ \mathbf{{0}}&{} {\mathbf{{M}}} \end{pmatrix}. \end{aligned}$$

The Hessian is a sum of two matrices. In the following, we show that each one of these matrices is positive semidefinite, which implies that the Hessian is a positive semidefinite matrix. First, it can be seen that the matrix \(\begin{pmatrix} \mathbf{{B}}&{} \mathbf{{0}}\\ \mathbf{{0}}&{} {\mathbf{{M}}} \end{pmatrix}\) is a positive semidefinite matrix because it is a block diagonal matrix of two positive semidefinite matrices (see the definitions of \(\mathbf{{B}}\) and \({\mathbf{{M}}}\) in (1) and (8), respectively). Second, the matrix \(\begin{pmatrix} \mathbf{{H}}^T\mathbf{{R}}^{-1}\mathbf{{H}}&{} \mathbf{{H}}^T\mathbf{{R}}^{-1} \\ \mathbf{{R}}^{-1}\mathbf{{H}}&{} \mathbf{{R}}^{-1} \end{pmatrix}\) is a positive semidefinite matrix since it can be verified that its Schur complement,

$$\begin{aligned} \mathbf{{H}}^T\mathbf{{R}}^{-1}\mathbf{{H}}-\mathbf{{H}}^T\mathbf{{R}}^{-1}\mathbf{{R}}\mathbf{{R}}^{-1}\mathbf{{H}}=\mathbf{{0}}, \end{aligned}$$

is a positive semidefinite matrix [13].

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morgenstern, G., Dabush, L., Kim, J., Anderson, J., Zussman, G., Routtenberg, T. (2023). Invited Paper: Detection of False Data Injection Attacks in Power Systems Using a Secured-Sensors and Graph-Based Method. In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44274-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44273-5

  • Online ISBN: 978-3-031-44274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics