Skip to main content

Minimum Algorithm Sizes for Self-stabilizing Gathering and Related Problems of Autonomous Mobile Robots (Extended Abstract)

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14310))

  • 158 Accesses

Abstract

We investigate swarms of autonomous mobile robots in the Euclidean plane. Each robot has a target function to determine a destination point from the robots’ positions. All robots in a swarm conventionally take the same target function. We allow the robots in a swarm to take different target functions, and investigate the effects of the number of distinct target functions on the problem-solving ability. Specifically, we are interested in how many distinct target functions are necessary and sufficient to solve some well-known problems which are not solvable when all robots take the same target function, regarding target function as a resource, like time and message, to solve a problem. The number of distinct target functions necessary and sufficient to solve a problem \(\varPi \) is called the minimum algorithm size (MAS) for \(\varPi \). (The MAS is \(\infty \), if \(\varPi \) is not solvable even for the robots with unique target functions.) We establish the MASs for solving the gathering and related problems from any initial configuration, i.e., in a self-stabilizing manner. Our results include: There is a family of the scattering problems cSCT \((1 \le c \le n)\) such that the MAS for the cSCAT is c, where n is the size of the swarm. The MAS for the gathering problem is 2. It is 3, for the problem of gathering all non-faulty robots at a single point, regardless of the number \((< n)\) of crash failures. It is however \(\infty \), for the problem of gathering all robots at a single point, in the presence of at most one crash failure.

Due to space limitation, some proofs and contributions are deferred to full version [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we abuse a term “algorithm.” Despite that an algorithm must have a finite description conventionally, a target function (and hence a set of target functions) may not, as defined in Sect. 2. To compensate the abuse, when we will show the existence of an algorithm, we insist on giving a finite procedure to compute it.

  2. 2.

    We say that one object is similar to another, if the latter is obtained from the former by a combination of scaling, translation, and rotation (but not by a reflection).

  3. 3.

    Since \(Z_i\) is self-centric, \((0,0) \not \in P\) means an error of eye sensor, which we assume will not occur.

  4. 4.

    We use the same notation < to denote the lexicographic order on \(R^2\) and the order on R to save the number of notations.

  5. 5.

    We assume \(\boldsymbol{p}_0 = \boldsymbol{q}_0\).

  6. 6.

    Since \(dist(\boldsymbol{o}_P, \boldsymbol{o}_P) = 0\), \(V_P({\boldsymbol{q}})\) is not compared with \(V_P(\boldsymbol{o}_P)\) with respect to \(\sqsupset \).

  7. 7.

    Note that Z is uniquely determined, and the unit distance of Z is \(dist(\boldsymbol{p}_1,\boldsymbol{p}_3)/31\).

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1063–1071(2004)

    Google Scholar 

  2. Altisen, K., Datta, A.K., Devismes, S., Durand, A., Larmore, L.L.: Election in unidirectional rings with homonyms. J. Parallel Distrib. Comput. 146, 79–95 (2010)

    Article  Google Scholar 

  3. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15, 818–828 (1999)

    Article  Google Scholar 

  4. Angluin, D.: Local and global properties in networks of processors. In: 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)

    Google Scholar 

  5. Arévalo, S., Anta, A.F., Imbs, D., Jiménez, E., Raynal, M.: Failure detectors in homonymous distributed systems (with an application to consensus). J. Parallel Distrib. Comput. 83, 83–95 (2015)

    Article  Google Scholar 

  6. Asahiro, Y., Yamashita, M.: Compatibility of convergence algorithms for autonomous mobile robots. In: Rajsbaum, S., Balliu, A., Daymude, J.J., Olivetti, D. (eds.) Structural Information and Communication Complexity. SIROCCO 2023. LNCS, vol. 13892, pp. 149–164. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32733-9_8

  7. Asahiro, Y., Yamashita, M.: Minimum algorithm sizes for self-stabilizing gathering and related problems of autonomous mobile robots. arXiv: 2304.02212

  8. Attiya, H., Snir, M., Warmuth, M.K.: Computing on the anonymous ring. J. ACM 35(4), 845–875 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: IEEE 33rd International Conference on Distributed Computing Systems, pp. 337–346 (2013)

    Google Scholar 

  10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_52

    Chapter  Google Scholar 

  12. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns with oblivious mobile robots. Distrib. Comput. 28, 131–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A., Ruppert, E., Tran-The, H.: Byzantine agreement with homonyms. Distrib. Comput. 26, 321–340 (2013)

    Article  MATH  Google Scholar 

  14. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Leader election in rings with homonyms. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 9–24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09581-3_2

    Chapter  Google Scholar 

  15. Dieudonné, Y., Petit, F.: Scatter of weak mobile robots. Parallel Process. Lett. 19(1), 175–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theor. Comput. Sci. 428, 47–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dobrev, S., Pelc, A.: Leader election in rings with nonunique labels. Fund. Inform. 59(4), 333–347 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Flocchini, P.: Gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science, vol. 11340, pp. 63–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_4

    Chapter  Google Scholar 

  19. Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem for asynchronous heterogeneous mobile robots. Theor. Comput. Sci. 721, 27–41 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matias, Y., Afek, Y.: Simple and efficient election algorithms for anonymous networks. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 183–194. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51687-5_42

    Chapter  Google Scholar 

  21. Prencipe, G.: Pattern formation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 37–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_3

    Chapter  Google Scholar 

  22. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation and agreement problems. SIAM J. Comput. 28, 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yamashita, M., Kameda, T.: Computing on an anonymous network. In: 7th ACM Symposium on Principles of Distributed Computing, pp. 117–130(1988)

    Google Scholar 

  24. Yamashita, M., Kameda, T.: Electing a leader when processor identity numbers are not distinct (extended abstract). In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 303–314. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51687-5_52

    Chapter  Google Scholar 

  25. Yamashita, M., Kameda, T.: Leader election problem on networks in which processor identity numbers are not distinct. IEEE Trans. Parallel Distrib. Syst. 10(9), 878–887 (1999)

    Article  Google Scholar 

  26. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional Euclidean space. J. ACM 64, 1–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by JSPS KAKENHI Grant Numbers JP17K00024 and JP22K11915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Asahiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asahiro, Y., Yamashita, M. (2023). Minimum Algorithm Sizes for Self-stabilizing Gathering and Related Problems of Autonomous Mobile Robots (Extended Abstract). In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44274-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44273-5

  • Online ISBN: 978-3-031-44274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics