Skip to main content

Brief Announcement: Understanding Self-stabilizing Node-Capacitated Overlay Networks Through Simulation

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14310))

  • 147 Accesses

Abstract

Overlay networks, where connections are made over logical links composed of zero or more physical links, are a popular paradigm in modern distributed computing. The use of logical links allows the creation of a variety of network topologies with desirable properties such as low degree and low diameter, regardless of the (usually) fixed physical topology. Many of these overlay networks operate in unfriendly environments where transient faults are commonplace. Self-stabilizing overlay networks present one way to manage these faults. In particular, self-stabilizing overlay networks can guarantee that the desired network topology is created when starting from any weakly-connected initial state.

To date, work on self-stabilizing overlay networks has assumed the network has either unbounded bandwidth, or that the bandwidth constraints are placed on the communication links themselves. In practice, however, the bandwidth constraints are actually capacities on the nodes: adding and deleting logical links does not change the fixed physical links being used. In this work, we describe the node-capacitated model for self-stabilizing overlay networks. To better understand this new model, we created a simulation and ran it numerous times while adjusting various parameters. We discuss this simulation and several experiments. Finally, we propose future directions for self-stabilizing node-capacitated overlay networks.

This project is funded in part by the Louis Stokes Alliance for Minority Participation (LSAMP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Feldmann, M., Scheideler, C., Schmid, S.: Survey on algorithms for self-stabilizing overlay networks. ACM Comput. Surv. 53(4), 1–24 (2020). https://doi.org/10.1145/3397190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Berns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afeaneku, W., Berns, A., Kuchenberg, W., Leisinger, S., Liu, C. (2023). Brief Announcement: Understanding Self-stabilizing Node-Capacitated Overlay Networks Through Simulation. In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44274-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44273-5

  • Online ISBN: 978-3-031-44274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics