Skip to main content

Pitfalls of Conformal Predictions for Medical Image Classification

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

Reliable uncertainty estimation is one of the major challenges for medical classification tasks. While many approaches have been proposed, recently the statistical framework of conformal predictions has gained a lot of attention, due to its ability to provide provable calibration guarantees. Nonetheless, the application of conformal predictions in safety-critical areas such as medicine comes with pitfalls, limitations and assumptions that practitioners need to be aware of. We demonstrate through examples from dermatology and histopathology that conformal predictions are unreliable under distributional shifts in input and label variables. Additionally, conformal predictions should not be used for selecting predictions to improve accuracy and are not reliable for subsets of the data, such as individual classes or patient attributes. Moreover, in classification settings with a small number of classes, which are common in medical image classification tasks, conformal predictions have limited practical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1(1), 20–23 (2019). https://doi.org/10.1038/s42256-018-0004-1

    Article  Google Scholar 

  2. Van der Laak, J., Litjens, G., Ciompi, F.: Deep learning in histopathology: the path to the clinic. Nat. Med. 27(5), 775–784 (2021). https://doi.org/10.1038/s41591-021-01343-4

  3. Kompa, B., Snoek, J., Beam, A.L.: Second opinion needed: communicating uncertainty in medical machine learning. NPJ Digit. Med. 4(1), 4 (2021). https://doi.org/10.1038/S41746-020-00367-3

    Article  Google Scholar 

  4. Jaeger, P.F., Lüth, C.T., Klein, L., Bungert, T.J.: A call to reflect on evaluation practices for failure detection in image classification. arXiv preprint arXiv:2211.15259 (2022). https://doi.org/10.48550/arXiv.2211.15259

  5. Mehrtens, H.A., Kurz, A., Bucher, T.-C., Brinker, T.J.: Benchmarking common uncertainty estimation methods with histopathological images under domain shift and label noise. Med. Image Anal. (2023). https://doi.org/10.1016/j.media.2023.102914

  6. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New York (2005). https://doi.org/10.1007/b106715

  7. Wieslander, H., et al.: Deep learning with conformal prediction for hierarchical analysis of large-scale whole-slide tissue images. IEEE J. Biomed. Health Inform. 25(2), 371–380 (2020). https://doi.org/10.1109/JBHI.2020.2996300

    Article  Google Scholar 

  8. Olsson, H., et al.: Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction. Nat. Commun. 13(1), 7761 (2022). https://doi.org/10.1038/s41467-022-34945-8

    Article  Google Scholar 

  9. Lu, C., Lemay, A., Chang, K., Höbel, K., Kalpathy-Cramer, J.: Fair conformal predictors for applications in medical imaging. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12008–12016 (2022). https://doi.org/10.1609/aaai.v36i11.21459

  10. Lu, C., Chang, K., Singh, P., Kalpathy-Cramer, J.: Three applications of conformal prediction for rating breast density in mammography. arXiv preprint arXiv:2206.12008 (2022). https://doi.org/10.48550/ARXIV.2206.12008

  11. Lu, C., Angelopoulos, A.N., Pomerantz, S.: Improving trustworthiness of AI disease severity rating in medical imaging with ordinal conformal prediction sets. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 545–554 (2022). https://doi.org/10.48550/ARXIV.2207.02238

  12. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511 (2021)

  13. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Romano, Y., Sesia, M., Candes, E.: Classification with valid and adaptive coverage. Adv. Neural. Inf. Process. Syst. 33, 3581–3591 (2020). https://doi.org/10.48550/arXiv.2006.02544

    Article  Google Scholar 

  15. Angelopoulos, A., Bates, S., Malik, J., Jordan, M.I.: Uncertainty sets for image classifiers using conformal prediction. arXiv preprint arXiv:2009.14193 (2020). https://doi.org/10.48550/arXiv.2009.14193

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  18. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018). https://doi.org/10.1109/TMI.2018.2867350

    Article  Google Scholar 

  19. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  21. Maddox, W.J., Izmailov, P., Garipov, T., Vetrov, D.P., Wilson, A.G.: A simple baseline for Bayesian uncertainty in deep learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Vovk, V.: Conditional validity of inductive conformal predictors. In: Asian Conference on Machine Learning, pp. 475–490 (2012). https://doi.org/10.1007/s10994-013-5355-6

  23. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a largescale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

Download references

Acknowledgements

This publication is funded by the ‘Ministerium für Soziales, Gesundheit und Integration’, Baden Württemberg, Germany, as part of the ‘KI-Translations-Initiative’. Titus Josef Brinker owns a company that develops mobile apps (Smart Health Heidelberg GmbH, Heidelberg, Germany), outside of the scope of the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus J. Brinker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehrtens, H., Bucher, T., Brinker, T.J. (2023). Pitfalls of Conformal Predictions for Medical Image Classification. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics