Skip to main content

Examining the Effects of Slice Thickness on the Reproducibility of CT Radiomics for Patients with Colorectal Liver Metastases

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

We present an analysis of 81 patients with colorectal liver metastases from two major cancer centers prospectively enrolled in an imaging trial to assess reproducibility of radiomic features in contrast-enhanced CT. All scans were reconstructed with different slice thicknesses and levels of iterative reconstruction. Radiomic features were extracted from the liver parenchyma and largest metastasis from each reconstruction, using different levels of resampling and methods of feature aggregation. The prognostic value of reproducible features was tested using Cox proportional hazards to model overall survival in an independent, public data set of 197 hepatic resection patients with colorectal liver metastases. Our results show that larger differences in slice thickness reduced the concordance of features (\(p<10^{-6}\)). Extracting features with 2.5D aggregation and no axial resampling produced the most robust features, and the best test-set performance in the survival model on the independent data set (C-index = 0.65). Across all feature extraction methods, restricting the survival models to use reproducible features had no statistically significant effect on the test set performance (\(p=0.98\)). In conclusion, our results show that feature extraction settings can positively impact the robustness of radiomics features to variations in slice thickness, without negatively effecting prognostic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berenguer, R., et al.: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2), 407–415 (2018). https://doi.org/10.1148/radiol.2018172361

    Article  Google Scholar 

  2. Carrasco, J.L., Jover, L.: Estimating the generalized concordance correlation coefficient through variance components. Biometrics 59(4), 849–858 (2003). https://doi.org/10.1111/j.0006-341x.2003.00099.x

    Article  MathSciNet  Google Scholar 

  3. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  4. Emaminejad, N., Wahi-Anwar, M.W., Kim, G.H.J., Hsu, W., Brown, M., McNitt-Gray, M.: Reproducibility of lung nodule radiomic features: Multivariable and univariable investigations that account for interactions between CT acquisition and reconstruction parameters. Med. Phys. 48(6), 2906–2919 (2021). https://doi.org/10.1002/mp.14830

    Article  Google Scholar 

  5. Erdal, B.S., et al.: Are quantitative features of lung nodules reproducible at different CT acquisition and reconstruction parameters? PLoS ONE 15, e0240184 (2020). https://doi.org/10.1371/journal.pone.0240184

    Article  Google Scholar 

  6. Ger, R.B., et al.: Comprehensive investigation on controlling for CT imaging variabilities in radiomics studies. Sci. Rep. 8(1), 13047 (2018). https://doi.org/10.1038/s41598-018-31509-z

    Article  Google Scholar 

  7. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016). https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  8. van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.can-17-0339

    Article  Google Scholar 

  9. Shafiq-ul Hassan, M., Latifi, K., Zhang, G., Ullah, G., Gillies, R., Moros, E.: Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci. Rep. 8(1), 10545 (2018). https://doi.org/10.1038/s41598-018-28895-9

    Article  Google Scholar 

  10. Shafiq-ul Hassan, M., et al.: Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 44(3), 1050–1062 (2017). https://doi.org/10.1002/mp.12123

    Article  Google Scholar 

  11. Horvat, N., et al.: A primer on texture analysis in abdominal radiology. Abdom. Radiol. (NY) 47, 2972–2985 (2022). https://doi.org/10.1007/s00261-021-03359-3

    Article  Google Scholar 

  12. Ibrahim, A., et al.: MaasPenn radiomics reproducibility score: a novel quantitative measure for evaluating the reproducibility of CT-based handcrafted radiomic features. Cancers (Basel) 14(7), 1599 (2022). https://doi.org/10.3390/cancers14071599

    Article  MathSciNet  Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  14. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F.A. (ed.) Intraoperative Imaging and Image-Guided Therapy, pp. 277–289. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

    Chapter  Google Scholar 

  15. Kim, Y.J., Lee, H.J., Kim, K.G., Lee, S.H.: The effect of CT scan parameters on the measurement of CT radiomic features: a lung nodule phantom study. Comput. Math. Methods Med. 2019, 1–12 (2019). https://doi.org/10.1155/2019/8790694

    Article  Google Scholar 

  16. Larue, R.T.H.M., et al.: Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol. 56(11), 1544–1553 (2017). https://doi.org/10.1080/0284186x.2017.1351624

    Article  Google Scholar 

  17. Ligero, M., et al.: Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Eur. Radiol. 31(3), 1460–1470 (2020). https://doi.org/10.1007/s00330-020-07174-0

    Article  Google Scholar 

  18. Lin, L.I.K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1), 255 (1989). https://doi.org/10.2307/2532051

    Article  Google Scholar 

  19. Lu, L., Ehmke, R.C., Schwartz, L.H., Zhao, B.: Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS ONE 11(12), e0166550 (2016). https://doi.org/10.1371/journal.pone.0166550

    Article  Google Scholar 

  20. Meyer, M., et al.: Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings. Radiology 293(3), 583–591 (2019). https://doi.org/10.1148/radiol.2019190928

    Article  Google Scholar 

  21. Park, S., et al.: Deep learning algorithm for reducing CT slice thickness: effect on reproducibility of radiomic features in lung cancer. Korean J. Radiol. 20(10), 1431 (2019). https://doi.org/10.3348/kjr.2019.0212

    Article  Google Scholar 

  22. Perrin, T., et al.: Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom. Radiol. (NY) 43(12), 3271–3278 (2018). https://doi.org/10.1007/s00261-018-1600-6

    Article  Google Scholar 

  23. Sanchez, L.E., Rundo, L., Gill, A.B., Hoare, M., Serrao, E.M., Sala, E.: Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle. Sci. Rep. 11(1), 8262 (2021). https://doi.org/10.1038/s41598-021-87598-w

    Article  Google Scholar 

  24. Shen, C., Liu, Z., Guan, M., Song, J., Lian, Y., Wang, S., Tang, Z., Dong, D., Kong, L., Wang, M., Shi, D., Tian, J.: 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl. Oncol. 10(6), 886–894 (2017). https://doi.org/10.1016/j.tranon.2017.08.007

    Article  Google Scholar 

  25. Simpson, A.L., et al.: Computed tomography image texture: a noninvasive prognostic marker of hepatic recurrence after hepatectomy for metastatic colorectal cancer. Ann. Surg. Oncol. 24(9), 2482–2490 (2017). https://doi.org/10.1245/s10434-017-5896-1

    Article  Google Scholar 

  26. Simpson, A.L., et al.: Preoperative CT and survival data for patients undergoing resection of colorectal liver metastases (Colorectal-Liver-Metastases) (Version 2) [Data set]. The Cancer Imaging Archive (2023). https://doi.org/10.7937/QXK2-QG03

  27. van Timmeren, J.E., et al.: Test-retest data for radiomics feature stability analysis: generalizable or study-specific? Tomography 2(4), 361–365 (2016). https://doi.org/10.18383/j.tom.2016.00208

    Article  Google Scholar 

  28. Traverso, A., Wee, L., Dekker, A., Gillies, R.: Repeatability and reproducibility of radiomic features: a systematic review. Int. J. Radiat. Oncol. Biol. Phys. 102(4), 1143–1158 (2018). https://doi.org/10.1016/j.ijrobp.2018.05.053

    Article  Google Scholar 

  29. Varghese, B.A., et al.: Reliability of CT-based texture features: phantom study. J. Appl. Clin. Med. Phys. 20(8), 155–163 (2019). https://doi.org/10.1002/acm2.12666

    Article  Google Scholar 

  30. Yang, S., Wu, N., Zhang, L., Li, M.: Evaluation of the linear interpolation method in correcting the influence of slice thicknesses on radiomic feature values in solid pulmonary nodules: a prospective patient study. Ann. Transl. Med. 9(4), 279–279 (2021). https://doi.org/10.21037/atm-20-2992

    Article  Google Scholar 

  31. Zhao, B.: Understanding sources of variation to improve the reproducibility of radiomics. Front. Oncol. 11, 826 (2021). https://doi.org/10.3389/fonc.2021.633176

    Article  Google Scholar 

  32. Zhao, B., Tan, Y., Tsai, W.Y., Schwartz, L.H., Lu, L.: Exploring variability in CT characterization of tumors: a preliminary phantom study. Transl. Oncol. 7(1), 88–93 (2014). https://doi.org/10.1593/tlo.13865

    Article  Google Scholar 

  33. Zwanenburg, A., Leger, S., Vallières, M., Löck, S.: Image biomarker standardisation initiative: Reference manual. arXiv:1612.07003 [cs.CV] (2016). https://doi.org/10.48550/ARXIV.1612.07003

  34. Zwanenburg, A., et al.: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2), 328–338 (2020). https://doi.org/10.1148/radiol.2020191145

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grant R01 CA233888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob J. Peoples .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 930 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peoples, J.J. et al. (2023). Examining the Effects of Slice Thickness on the Reproducibility of CT Radiomics for Patients with Colorectal Liver Metastases. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics