Abstract
We construct a falsifiable set (non-)membership NIZK \(\mathbf {\Pi ^*}\) that is considerably more efficient than known falsifiable set (non-)membership NIZKs. It also has a universal CRS. \(\mathbf {\Pi ^*}\) is based on the novel concept of determinantal accumulators. Determinantal primitives have a similar relation to recent pairing-based (non-succinct) NIZKs of Couteau and Hartmann (Crypto 2020) and Couteau et al. (CLPØ, Asiacrypt 2021) that structure-preserving primitives have to the Groth-Sahai NIZK. We also extend CLPØ by proposing efficient (non-succinct) set non-membership arguments for a large class of languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We follow the literature by using “universal” both in universal accumulators (have a non-membership argument) and universal CRS (does not depend on the language).
- 2.
We use the standard additive bracket notation for pairing-based setting. For example, \([\chi ]_{1} = \chi [1]_{1}\), where \([1]_{1}\) is a generator of \(\mathbb {G}_{1}\).
- 3.
In our new primitives, the set consists of only one polyomial. However, the framework is valid in the more general case.
- 4.
In the collision-resistance proof of \(\textsf{ACC}_{\textsf{Nguyen}}\), \(\chi \) and \(\textsf{r}\) are given as integers and thus do not depend on \(\sigma \). Such a problem did also not exist in [13, 14] since there the CRS only contained a single element \([\textsf{e}]_{2}\) and thus did not depend on \(\sigma \).
References
Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_20
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–421 (2015). https://doi.org/10.1007/s00145-014-9196-7
Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_26
Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for DDH groups and their application to attribute-based anonymous credential systems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_20
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33
Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24
Blazy, O., Bultel, X., Lafourcade, P., Kempner, O.P.: Generic plaintext equality and inequality proofs. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 415–435. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8_20
Blazy, O., Chevalier, C., Vergnaud, D.: Non-interactive zero-knowledge proofs of non-membership. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 145–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_8
Blazy, O., Derler, D., Slamanig, D., Spreitzer, R.: Non-interactive plaintext (in-)equality proofs and group signatures with verifiable controllable linkability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 127–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_8
Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using undeniable attestations. In: Gritzalis, D., Jajodia, S., Samarati, P. (eds.) ACM CCS 2000, pp. 9–17. ACM Press (2000). https://doi.org/10.1145/352600.352604
Buldas, A., Laud, P., Lipmaa, H.: Eliminating counterevidence with applications to accountable certificate management. J. Comput. Secur. 10(3), 273–296 (2002)
Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_27
Couteau, G., Lipmaa, H., Parisella, R., Ødegaard, A.T.: Efficient NIZKs for algebraic sets. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 128–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_5
Damgård, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accumulators. Cryptology ePrint Archive, Report 2008/538 (2008). https://eprint.iacr.org/2008/538
Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_11
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17
Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14
Lipmaa, H., Parisella, R.: Set (non-)membership NIZKs from determinantal accumulators. Cryptology ePrint Archive, Report 2022/1570 (2022). https://eprint.iacr.org/2022/1570
Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_19
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lipmaa, H., Parisella, R. (2023). Set (Non-)Membership NIZKs from Determinantal Accumulators. In: Aly, A., Tibouchi, M. (eds) Progress in Cryptology – LATINCRYPT 2023. LATINCRYPT 2023. Lecture Notes in Computer Science, vol 14168. Springer, Cham. https://doi.org/10.1007/978-3-031-44469-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-44469-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44468-5
Online ISBN: 978-3-031-44469-2
eBook Packages: Computer ScienceComputer Science (R0)