Skip to main content

On Learning When to Decompose Graphical Models

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Abstract

Decomposition is a well-known algorithmic technique for Graphical Models. It is commonly believed that such a technique is cost-effective for instances with low width. In this paper, we show on a large data set of real-life inspired instances that this is not the case. To better understand this result, we narrow our study and consider k-tree instances where the width is well controlled and get similar results. Finally, we show that by adding a few simple features and using simple Machine Learning models we can predict the convenience to decompose with an accuracy of more than \(85\%\), which produces time reductions in standard benchmarks of nearly \(90\%\).

Supported by grant PID2021-122830OB-C43, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF: A way of making Europe”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A line of work under the name of soft global constraints extends this definition by allowing large scope cost functions as long as the functions are tractable.

  2. 2.

    Note that this corresponds to solving the problem with dynamic programming implemented with memoization.

  3. 3.

    http://genoweb.toulouse.inra.fr/~degivry/evalgm/.

  4. 4.

    https://forgemia.inra.fr/thomas.schiex/cost-function-library.

  5. 5.

    https://toulbar2.github.io/toulbar2/index.html.

References

  1. Allen, D., Darwiche, A.: New advances in inference by recursive conditioning. In: Meek, C., Kjærulff, U. (eds.) UAI 2003, Acapulco, Mexico, 7–10 August 2003, pp. 2–10. Morgan Kaufmann (2003)

    Google Scholar 

  2. Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M.: Anytime hybrid best-first search with tree decomposition for weighted CSP. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 12–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_2

    Chapter  Google Scholar 

  3. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint programming. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 219–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_9

    Chapter  Google Scholar 

  4. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: ICLR 2017, Toulon, France, 24–26 April 2017, Workshop Track Proceedings (2017)

    Google Scholar 

  5. Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory Ser. A 14(2), 137–148 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random forests in constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 74–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_6

    Chapter  MATH  Google Scholar 

  7. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints Int. J. 4(1), 79–89 (1999). https://doi.org/10.1023/A:1009812409930

    Article  MATH  Google Scholar 

  8. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.A.: Combining reinforcement learning and constraint programming for combinatorial optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3677–3687 (2021)

    Google Scholar 

  9. Cooper, G.F.: Bayesian belief-network inference using recursive decomposition. Technical report, Knowledge Systems Laboratory, Stanford, CA (1990)

    Google Scholar 

  10. Cooper, M.C., de Givry, S., Sánchez-Fibla, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artif. Intell. 174(7–8), 449–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Darwiche, A.: Recursive conditioning. Artif. Intell. 126(1–2), 5–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  13. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell. 113(1–2), 41–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dechter, R.: Constraint Processing. Elsevier/Morgan Kaufmann (2003)

    Google Scholar 

  15. Dechter, R.: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2nd edn. Morgan & Claypool Publishers (2019)

    Google Scholar 

  16. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif. Intell. 171(2–3), 73–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdeniz, S.P., Felfernig, A.: Cluster and learn: cluster-specific heuristics for graph coloring. In: PATAT 2018, pp. 401–404 (2018)

    Google Scholar 

  18. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfaction problems. In: IJCAI 1985, Los Angeles, CA, USA, August 1985, pp. 1076–1078 (1985)

    Google Scholar 

  19. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs via deep learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_18

    Chapter  MATH  Google Scholar 

  20. Gent, I.P., et al.: Learning when to use lazy learning in constraint solving. In: ECAI 2010, Lisbon, Portugal, 16–20 August 2010, Proceedings, vol. 215, pp. 873–878. IOS Press (2010)

    Google Scholar 

  21. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: questions and answers. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI, PODS 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 57–74. ACM (2016)

    Google Scholar 

  23. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In: ECAI 2004, Valencia, Spain, 22–27 August 2004, pp. 475–479. IOS Press (2004)

    Google Scholar 

  24. Huang, L., et al.: Branch and bound in mixed integer linear programming problems: a survey of techniques and trends. CoRR abs/2111.06257 (2021). https://arxiv.org/abs/2111.06257

  25. Hurley, B., et al.: Multi-language evaluation of exact solvers in graphical model discrete optimization. Constraints Int. J. 21(3), 413–434 (2016). https://doi.org/10.1007/s10601-016-9245-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. Artif. Intell. 146(1), 43–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jégou, P., Terrioux, C.: Decomposition and good recording for solving Max-CSPs. In: ECAI 2004, Spain, 22–27 August 2004, pp. 196–200 (2004)

    Google Scholar 

  28. Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solving CSPs. In: ECAI 2014, Czech Republic, 18–22 August 2014, vol. 263, pp. 465–470 (2014)

    Google Scholar 

  29. Jégou, P., Terrioux, C.: Combining restarts, nogoods and bag-connected decompositions for solving CSPs. Constraints Int. J. 22(2), 191–229 (2017). https://doi.org/10.1007/s10601-016-9248-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Bayardo Jr., R.J., Miranker, D.P.: On the space-time trade-off in solving constraint satisfaction problems. In: IJCAI 1995, Québec, Canada, 20–25 August 1995, vol. 2, pp. 558–562 (1995)

    Google Scholar 

  31. Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 478–492. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_32

    Chapter  Google Scholar 

  32. Larrosa, J., Meseguer, P., Sánchez-Fibla, M.: Pseudo-tree search with soft constraints. In: ECAI 2002, Lyon, France, July 2002, pp. 131–135. IOS Press (2002)

    Google Scholar 

  33. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159(1–2), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: IJCAI-2005, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 224–229 (2005)

    Google Scholar 

  35. Otten, L., Dechter, R.: Anytime AND/OR depth-first search for combinatorial optimization. AI Commun. 25(3), 211–227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Popescu, A., et al.: An overview of machine learning techniques in constraint solving. J. Intell. Inf. Syst. 58(1), 91–118 (2022). https://doi.org/10.1007/s10844-021-00666-5

    Article  Google Scholar 

  37. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sánchez-Fibla, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree decomposition. In: IJCAI 2009, California, USA, 11–17 July 2009, pp. 603–608 (2009)

    Google Scholar 

  39. Terrioux, C., Jégou, P.: Bounded backtracking for the valued constraint satisfaction problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 709–723. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_48

    Chapter  MATH  Google Scholar 

  40. Verfaillie, G., Lemaître, M., Schiex, T.: Russian doll search for solving constraint optimization problems. In: IAAI 1996, Portland, Oregon, USA, 4–8 August 1996, pp. 181–187 (1996)

    Google Scholar 

  41. Xu, H., Koenig, S., Kumar, T.K.S.: Towards effective deep learning for constraint satisfaction problems. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 588–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Petrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrova, A., Larrosa, J. (2023). On Learning When to Decompose Graphical Models. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics