Abstract
SAT solvers are widely used to solve industrial problems owing to their exceptional performance. One critical aspect of SAT solvers is the implementation of restarts, which aims to enhance performance by diversifying the search. However, it is uncertain whether restarts effectively lead to search diversification. We propose to adapt search similarity index (SSI), a metric designed to quantify the similarity between search processes, to evaluate the impact of restarts. Our experimental findings, which employ SSI, reveal how the impact of restarts varies with respect to the number of restarts, instance categories, and employed restart strategies. In light of these observations, we present a new restart strategy called Break-out Stagnation Restart (BroSt Restart), inspired by a financial market trading technique. This approach identifies stagnant search processes and diversifies the search by shuffling the decision order to leave the stagnant search. The evaluation results demonstrate that BroSt Restart improves the performance of a sequential SAT solver, solving 19 more instances (+3%) than state-of-the-art solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armin, B., Fazekas, K., Fleury, M.: CaDiCaL. https://github.com/arminbiere/cadical. Accessed 26 Jan 2023
Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, pp. 118–126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_11
Bayardo, R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world sat instances. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, pp. 203–208. AAAI 1997/IAAI 1997, AAAI Press (1997)
Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_4
Biere, A., Frohlich, A.: Evaluating CDCL restart schemes. In: Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing, vol. 59, pp. 1–17. EasyChair (2019). https://doi.org/10.29007/89dw
Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Complex golay pairs up to length 28: a search via computer algebra and programmatic SAT. J. Symb. Comput. 102, 153–172 (2021). https://doi.org/10.1016/j.jsc.2019.10.013
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557
Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: 15th National Conference on Artificial Intelligence and 10th Conference on Innovative Applications of Artificial Intelligence, pp. 431–437. AAAI (1998)
Guo, L., Lagniez, J.M.: Dynamic polarity adjustment in a parallel SAT solver. In: 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp. 67–73 (2011). https://doi.org/10.1109/ICTAI.2011.19
Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisfiability, Boolean Model. Comput. 6(4), 245–262 (2009). https://doi.org/10.3233/sat190070
Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15
Iida, Y., Sonobe, T., Inaba, M.: Diversification of parallel search of portfolio SAT solver by search similarity index. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds.) PRICAI 2022. Lecture Notes in Computer Science, vol. 13629, pp. 61–74. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20862-1_5
Liang, J.H., Oh, C., Mathew, M., Thomas, C., Li, C., Ganesh, V.: Machine learning-based restart policy for CDCL SAT solvers. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 94–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_6
Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las Vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993). https://doi.org/10.1016/0020-0190(93)90029-9
Marques-Silva, J., Sakallah, K.: Grasp: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). https://doi.org/10.1109/12.769433
Moon, S., Inaba, M.: Dynamic strategy to diversify search using a history map in parallel solving. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 260–266. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_21
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), pp. 530–535 (2001). https://doi.org/10.1145/378239.379017
Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Prentice Hall Press, Hoboken (1999)
Niklas Eén, N.S.: MiniSat. https://minisat.se/MiniSat.html. Accessed 26 Jan 2023
Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23
Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_25
SAT-competition: https://www.satcompetition.org/. Accessed 26 Jan 2023
Sinz, C., Iser, M.: Problem-sensitive restart heuristics for the DPLL procedure. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 356–362. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_33
Sonobe, T., Inaba, M.: Counter implication restart for parallel SAT solvers. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 485–490. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_49
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Iida, Y., Sonobe, T., Inaba, M. (2023). Unleashing the Potential of Restart by Detecting the Search Stagnation. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-44505-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44504-0
Online ISBN: 978-3-031-44505-7
eBook Packages: Computer ScienceComputer Science (R0)