Skip to main content

Unleashing the Potential of Restart by Detecting the Search Stagnation

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14286))

Included in the following conference series:

  • 855 Accesses

Abstract

SAT solvers are widely used to solve industrial problems owing to their exceptional performance. One critical aspect of SAT solvers is the implementation of restarts, which aims to enhance performance by diversifying the search. However, it is uncertain whether restarts effectively lead to search diversification. We propose to adapt search similarity index (SSI), a metric designed to quantify the similarity between search processes, to evaluate the impact of restarts. Our experimental findings, which employ SSI, reveal how the impact of restarts varies with respect to the number of restarts, instance categories, and employed restart strategies. In light of these observations, we present a new restart strategy called Break-out Stagnation Restart (BroSt Restart), inspired by a financial market trading technique. This approach identifies stagnant search processes and diversifies the search by shuffling the decision order to leave the stagnant search. The evaluation results demonstrate that BroSt Restart improves the performance of a sequential SAT solver, solving 19 more instances (+3%) than state-of-the-art solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armin, B., Fazekas, K., Fleury, M.: CaDiCaL. https://github.com/arminbiere/cadical. Accessed 26 Jan 2023

  2. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, pp. 118–126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_11

    Chapter  Google Scholar 

  3. Bayardo, R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world sat instances. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, pp. 203–208. AAAI 1997/IAAI 1997, AAAI Press (1997)

    Google Scholar 

  4. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_4

    Chapter  MATH  Google Scholar 

  5. Biere, A., Frohlich, A.: Evaluating CDCL restart schemes. In: Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing, vol. 59, pp. 1–17. EasyChair (2019). https://doi.org/10.29007/89dw

  6. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Complex golay pairs up to length 28: a search via computer algebra and programmatic SAT. J. Symb. Comput. 102, 153–172 (2021). https://doi.org/10.1016/j.jsc.2019.10.013

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

    Article  MathSciNet  MATH  Google Scholar 

  8. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: 15th National Conference on Artificial Intelligence and 10th Conference on Innovative Applications of Artificial Intelligence, pp. 431–437. AAAI (1998)

    Google Scholar 

  9. Guo, L., Lagniez, J.M.: Dynamic polarity adjustment in a parallel SAT solver. In: 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp. 67–73 (2011). https://doi.org/10.1109/ICTAI.2011.19

  10. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisfiability, Boolean Model. Comput. 6(4), 245–262 (2009). https://doi.org/10.3233/sat190070

    Article  MATH  Google Scholar 

  11. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    Chapter  MATH  Google Scholar 

  12. Iida, Y., Sonobe, T., Inaba, M.: Diversification of parallel search of portfolio SAT solver by search similarity index. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds.) PRICAI 2022. Lecture Notes in Computer Science, vol. 13629, pp. 61–74. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20862-1_5

    Chapter  Google Scholar 

  13. Liang, J.H., Oh, C., Mathew, M., Thomas, C., Li, C., Ganesh, V.: Machine learning-based restart policy for CDCL SAT solvers. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 94–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_6

    Chapter  Google Scholar 

  14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las Vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993). https://doi.org/10.1016/0020-0190(93)90029-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Marques-Silva, J., Sakallah, K.: Grasp: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). https://doi.org/10.1109/12.769433

    Article  MathSciNet  MATH  Google Scholar 

  16. Moon, S., Inaba, M.: Dynamic strategy to diversify search using a history map in parallel solving. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 260–266. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_21

    Chapter  Google Scholar 

  17. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), pp. 530–535 (2001). https://doi.org/10.1145/378239.379017

  18. Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Prentice Hall Press, Hoboken (1999)

    Google Scholar 

  19. Niklas Eén, N.S.: MiniSat. https://minisat.se/MiniSat.html. Accessed 26 Jan 2023

  20. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23

    Chapter  Google Scholar 

  21. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_25

    Chapter  Google Scholar 

  22. SAT-competition: https://www.satcompetition.org/. Accessed 26 Jan 2023

  23. Sinz, C., Iser, M.: Problem-sensitive restart heuristics for the DPLL procedure. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 356–362. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_33

    Chapter  Google Scholar 

  24. Sonobe, T., Inaba, M.: Counter implication restart for parallel SAT solvers. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 485–490. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichiro Iida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iida, Y., Sonobe, T., Inaba, M. (2023). Unleashing the Potential of Restart by Detecting the Search Stagnation. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics