Skip to main content

A Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14286))

Included in the following conference series:

  • 491 Accesses

Abstract

In this research, we develop a Bayesian optimization algorithm to solve expensive, constrained problems. We consider the presence of heteroscedastic noise in the evaluations and thus propose a new acquisition function to account for this noise in the search for the optimal point. We use stochastic kriging to fit the metamodels, and we provide computational results to highlight the importance of accounting for the heteroscedastic noise in the search for the optimal solution. Finally, we propose some promising directions for further research.

This study is supported by the Special Research Fund (BOF) of Hasselt University (grant number: BOF19OWB01), and the Flanders Artificial Intelligence Research Program (FLAIR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010). https://doi.org/10.1287/opre.1090.0754

    Article  MathSciNet  MATH  Google Scholar 

  3. Fieldsend, J.E., Everson, R.M.: The rolling tide evolutionary algorithm: a multiobjective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput. 19(1), 103–117 (2014)

    Article  Google Scholar 

  4. Frazier, P.I.: Bayesian optimization. In: Recent advances in optimization and modeling of contemporary problems, pp. 255–278. Informs (2018)

    Google Scholar 

  5. Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential information collection. SIAM J. Control. Optim. 47(5), 2410–2439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607 (2014)

  7. Gonzalez, S.R., Jalali, H., Van Nieuwenhuyse, I.: A multiobjective stochastic simulation optimization algorithm. Eur. J. Oper. Res. 284(1), 212–226 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gramacy, R.B., et al.: Modeling an augmented Lagrangian for blackbox constrained optimization. Technometrics 58(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  9. Gramacy, R.B., Lee, H.K.: Optimization under unknown constraints. In: Proceeding of the ninth Bayesian Statistics International Meeting, pp. 229–256. Oxford University Press (2011)

    Google Scholar 

  10. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimization. J. Mach. Learn. Res. 13(6), 1809–1837 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z.: A general framework for constrained Bayesian optimization using information-based search. J. Mach. Learn. Res. 17(1), 1–53 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of kriging-based algorithms for simulation optimization with heterogeneous noise. Eur. J. Oper. Res. 261(1), 279–301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kleijnen, J.P.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleijnen, J.P., Van Nieuwenhuyse, I., van Beers, W.: Constrained optimization in simulation: efficient global optimization and karush-kuhn-tucker conditions (2021)

    Google Scholar 

  16. Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization with noisy experiments. Bayesian Anal. 14(2), 495–519 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loeppky, J., Sacks, J., Welch, W.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4), 366–376 (2009)

    Article  MathSciNet  Google Scholar 

  18. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07165-2_55

    Chapter  Google Scholar 

  19. Pourmohamad, T., Lee, H.K.: Bayesian optimization via barrier functions. J. Comput. Graph. Stat. 31(1), 74–83 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Quan, N., Yin, J., Ng, S.H., Lee, L.H.: Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints. IIE Trans. 45(7), 763–780 (2013)

    Article  Google Scholar 

  21. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  22. Rojas-Gonzalez, S., Van Nieuwenhuyse, I.: A survey on kriging-based infill algorithms for multiobjective simulation optimization. Comput. Oper. Res. 116, 104869 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer, New York (2011)

    MATH  Google Scholar 

  24. Ungredda, J., Branke, J.: Bayesian optimisation for constrained problems. arXiv preprint arXiv:2105.13245 (2021)

  25. Zeng, Y., Cheng, Y., Liu, J.: An efficient global optimization algorithm for expensive constrained black-box problems by reducing candidate infilling region. Inf. Sci. 609, 1641–1669 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Amini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amini, S., Van Nieuwenhuyse, I. (2023). A Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics