Skip to main content

Could the Consideration of Symmetry be Statistically Significant for Breast Infrared Analysis?

  • Conference paper
  • First Online:
Artificial Intelligence over Infrared Images for Medical Applications (AIIIMA 2023)

Abstract

The use of thermal imaging for disease diagnosis has been successful. This study explores the impact of considering bilateral symmetry in thermography. Concretely: it consider if there is statistically difference in the results of a diagnosis with inclusion of texture symmetry. For this, symmetry analysis was conducted on three levels: thorax sides, breast regions, and quadrants using thermograms from the DMR-IR database. Haralick (H) descriptors and local binary patterns (LBP) were computed to be used as texture features. Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) techniques were employed to classify them as from cancer or normal images. Accuracy was used for evaluation, followed by post-hoc analysis using Friedman and Nemenyi tests. The results were conclusive, with a \(p<0.05\), allowing the rejection of the null hypotheses \(H_{0}\) at all levels and confirming that including symmetry consideration in the feature vector led to statistically significant differences in the results. With \(p<0.01\), this was observed for the majority of the cases at the thorax side and breast levels. Taking into account the small number of samples (100) used, we can concluded that symmetry has an impact on the cancer diagnostic result using infrared images, but this impact on numbers should be better analyzed in future works. All developments, from the breast segmentation and quadrants masks up to the computer code, are publicly available in a GitHub repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borchartt, T.B., et al.: Combining approaches for early diagnosis of breast diseases using thermal imaging. Int. J. Innovative Comput. Appl. 4(3–4), 163–183 (2012). https://doi.org/10.1504/IJICA.2012.050054

    Article  Google Scholar 

  2. Borchartt, T.B., Conci, A., Lima, R.C.F., Resmini, R., Sanchez, A.: Breast thermography from an image processing viewpoint: a survey. Signal Process. 93(10), 2785–2803 (2013). https://doi.org/10.1016/j.sigpro.2012.08.012

    Article  Google Scholar 

  3. Rodrigues, E. O., Conci, A., Borchartt, T. B., Paiva, A. C., Silva, A. C., MacHenry, T.: Comparing Results of Thermographic Images Based Diagnosis for Breast Diseases. arXiv preprint arXiv:2208.14410 (2022)

  4. Damiao, C.P., et al.: On the possibility of using temperature to aid in thyroid nodule investigation. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-78047-1

    Article  Google Scholar 

  5. Gonçalves, C.B., Souza, J.R., Fernandes, H.: CNN optimization using surrogate evolutionary algorithm for breast cancer detection using infrared images. In: 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), Shenzen, China, pp. 84–89 (2022). https://doi.org/10.1109/CBMS55023.2022.00022

  6. Figueiredo, A.A.A., do Nascimento, J.G., Malheiros, F.C., da Silva Ignacio, L.H., Fernandes, H.C., Guimaraes, G.: Breast tumor localization using skin surface temperatures from a 2D anatomic model without knowledge of the thermophysical properties. Comput. Methods ProgramsBiomed. 172, 65–77 (2019)

    Google Scholar 

  7. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2016)

    Google Scholar 

  8. Silva, L.F., et al.: A new database for breast research with infrared image. J. Med. Imaging Health Inform. 4(1), 92–100 (2014). https://doi.org/10.1166/jmihi.2014.1226

    Article  Google Scholar 

  9. Silva, L.F., Santos, A.A.S.M.D., Bravo, R.S., Silva, A.C., Muchaluat-Saade, D.C., Conci, A.: Hybrid analysis for indicating patients with breast cancer using temperature time series. Comput. Methods Programs Biomed. 130, 142–153 (2016). https://doi.org/10.1016/j.cmpb.2016.03.002

    Article  Google Scholar 

  10. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_36

    Chapter  Google Scholar 

  11. Bastos, L. de O., Liatsis, P., Conci, A.: Automatic texture segmentation based on k-means clustering and efficient calculation of co-occurrence features. In: Proceedings do 2008 15th International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, pp. 141–144 (2008). https://doi.org/10.1109/IWSSIP.2008.4604387

  12. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

  13. dos Santos Araujo, A., Conci, A., Hernandez Moran, M.B., Muchaluat-Saade, D.C., Resmini, R.: On computation of texture descriptors from sum and difference histograms. In: Proceedings do 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP), Maribor, Slovenia, pp. 1–5. (2018). https://doi.org/10.1109/IWSSIP.2018.8439522

  14. Coelho, L.P.: Mahotas: open source software for scriptable computer vision. J. Open Res. Softw. 1(1), e3 (2013). https://doi.org/10.5334/jors.ac

    Article  Google Scholar 

  15. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  16. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: scikit-image contributors: scikit-image: Image processing in Python. PeerJ 2, e453 (2014). https://doi.org/10.7717/peerj.453

  17. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning series. MIT Press (2012)

    Google Scholar 

  18. Virtanen, P., Gommers, R., Oliphant, T.E. et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  19. Fernandez, A.: Mastering OpenCV 4 with Python. Packt Publishing Ltd. (2019)

    Google Scholar 

  20. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. Methods Mol. Biol. 609, 223–39. PMID: 20221922 (2010). https://doi.org/10.1007/978-1-60327-241-4_13

  21. scikit-learn. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011)

    Google Scholar 

  22. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods. Wiley Series in Probability and Statistics. Wiley (2013)

    Google Scholar 

  23. Harter, H.L.: Tables of range and studentized range. Ann. Math. Stat. 31(4), 1122–1147 (1960). https://doi.org/10.1214/aoms/1177705684

    Article  MathSciNet  Google Scholar 

  24. Princigalli, N.: Symmetry Analysis in Thermography: An application in breasts (in Portuguese: Análise de Simetria em Termografias: uma aplicação em mamas). (Final course monograph), GitHub (2023). https://github.com/nuba/uff-2023-tcc-simetria-mamas

  25. Silva, L., Seixas, F., Fontes, C., Muchaluat-Saade, D., Conci, A.A.: Computational method for breast abnormality detection using thermographs. In Proceedings do 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA. pp. 469–474 (2020). https://doi.org/10.1109/CBMS49503.2020.00095

  26. Digit3D projects. https://sites.google.com/view/three-dimensional-breast-model

  27. Conci, A., Kubrusly, C.: Distances between sets - a survey. Advances in Mathematical Sciences and Applications, vol. 26(1), pp. 1–18 (2017)

    Google Scholar 

Download references

Acknowledgments

E.L.S.M. is supported by Federal Institute of Education, Science and Technology of Rondônia (IFRO). A.C. is supported in part by CYTED, the National Institutes of Science and Technology (INCT - MACC project), National Council for Scientific and Technological (CNPq) under grant 307638/2022-79, the Research Support Foundation of Rio de Janeiro State (FAPERJ) over CNE, SIADE-2, e-Health Rio and Digit3D (“tematico”) projects [26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuba Princigalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Princigalli, N., Moura, E.L.S., Conci, A. (2023). Could the Consideration of Symmetry be Statistically Significant for Breast Infrared Analysis?. In: Kakileti, S.T., Manjunath, G., Schwartz, R.G., Frangi, A.F. (eds) Artificial Intelligence over Infrared Images for Medical Applications. AIIIMA 2023. Lecture Notes in Computer Science, vol 14298. Springer, Cham. https://doi.org/10.1007/978-3-031-44511-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44511-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45657-2

  • Online ISBN: 978-3-031-44511-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics