Skip to main content

MIC-CUSP: Multimodal Image Correlations for Ultrasound-Based Prostate Cancer Detection

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

Transrectal b-mode ultrasound images are used to guide pros-tate biopsies but are rarely used for prostate cancer detection. Cancer detection rates on b-mode ultrasound are low due to the low signal-to-noise ratio and imaging artifacts like shadowing and speckles, resulting in missing upto 52% clinically significant cancers in ultrasound-guided biopsies. Since b-mode ultrasound is widely accessible, routinely used in clinical care, inexpensive, and a fast non-invasive imaging modality, ultrasound-based prostate cancer detection has great clinical significance. Here, we present an automated ultrasound-based prostate cancer detection method, MIC-CUSP (Multimodal Image Correlations for Cancer detection on Ultra-Sound leveraging Pretraining with weak labels). First, MIC-CUSP learns richer imaging-inspired ultrasound biomarkers by leveraging registration-independent multimodal image correlations between b-mode ultrasound and two unaligned richer imaging modalities, Magnetic Resonance Imaging (MRI) and post-operative histopathology images. Second, MIC-CUSP uses the richer imaging-inspired ultrasound biomarkers as inputs to the cancer detection model to localize cancer on b-mode ultrasound images, in absence of MRI and histopathology images. MIC-CUSP addresses the lack of large accurately labeled ultrasound datasets by pretraining with a large public dataset of 1573 b-mode ultrasound scans and weak labels, and fine-tuning with 289 internal patients with strong labels. MIC-CUSP was evaluated on 41 patients, and compared with four clinician-readers with 1–12 years of experience. MIC-CUSP achieved patient-level Sensitivity and Specificity of 0.65 and 0.81 respectively, outperforming an average clinician-reader.

M. Rusu and G. Sonn—Contributed equally as senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, H.U., et al.: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071), 815–822 (2017)

    Article  Google Scholar 

  2. Rouvière, O., et al.: Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-first): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20(1), 100–109 (2019)

    Article  Google Scholar 

  3. Gaffney, C.D., et al.: Increasing utilization of MRI before prostate biopsy in black and non-black men: an analysis of the seer-medicare cohort. Am. J. Roentgenol. 217(2), 389–394 (2021)

    Article  Google Scholar 

  4. Choi, Y.H., et al.: Comparison of cancer detection rates between TRUS-guided biopsy and MRI-targeted biopsy according to PSA level in biopsy-naive patients: a propensity score matching analysis. Clin. Genitourin. Cancer 17(1), e19–e25 (2019)

    Article  MathSciNet  Google Scholar 

  5. Azizi, S., et al.: Deep recurrent neural networks for prostate cancer detection: analysis of temporal enhanced ultrasound. IEEE Trans. Med. Imaging 37(12), 2695–2703 (2018)

    Article  Google Scholar 

  6. Schimmöller, L., et al.: MRI-guided in-bore biopsy: differences between prostate cancer detection and localization in primary and secondary biopsy settings. Am. J. Roentgenol. 206(1), 92–99 (2016). PMID: 26700339

    Article  Google Scholar 

  7. Ahmed, H.U., El-Shater Bosaily, A., et al.: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071), 815–822 (2017)

    Article  Google Scholar 

  8. Hassan, M.R., et al.: Prostate cancer classification from ultrasound and MRI images using deep learning based explainable artificial intelligence. Futur. Gener. Comput. Syst. 127, 462–472 (2022)

    Article  Google Scholar 

  9. Han, S.M., Lee, H.J., Choi, J.Y.: Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. J. Digit. Imaging 21(1), 121–133 (2008)

    Article  Google Scholar 

  10. Wildeboer, R.R., Mannaerts, C.K., van Sloun, R.J.G., et al.: Automated multiparametric localization of prostate cancer based on b-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur. Radiol. 30(2), 806–815 (2020)

    Article  Google Scholar 

  11. Azizi, S., et al.: Learning from noisy label statistics: detecting high grade prostate cancer in ultrasound guided biopsy. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 21–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_3

    Chapter  Google Scholar 

  12. Moradi, M., Abolmaesumi, P., Siemens, et al.: P6C-7 ultrasound RF time series for detection of prostate cancer: feature selection and frame rate analysis. In: 2007 IEEE Ultrasonics Symposium Proceedings, pp. 2493–2496 (2007)

    Google Scholar 

  13. Imani, F., Abolmaesumi, P., Gibson, M., et al.: Computer-aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE Trans. Med. Imaging 34(11), 2248–2257 (2015)

    Article  Google Scholar 

  14. Sedghi, A., Pesteie, M., Javadi, G., et al.: Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. IJCARS 14(6), 1009–1016 (2019)

    Google Scholar 

  15. Natarajan, S., Priester, A., Margolis, D., Huang, J., Marks, L.: Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy) (2020)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  17. Abraham, B., Nair, M.S.: Automated grading of prostate cancer using convolutional neural network and ordinal class classifier. Inform. Med. Unlock. 17, 100256 (2019)

    Google Scholar 

  18. Salama, W.M., Aly, M.H.: Prostate cancer detection based on deep convolutional neural networks and support vector machines: a novel concern level analysis. Multimed. Tools Appl. 80, 1–13 (2021)

    Article  Google Scholar 

  19. Alkadi, R., Taher, F., El-Baz, A., Werghi, N.: A deep learning-based approach for the detection and localization of prostate cancer in t2 magnetic resonance images. J. Digit. Imaging 32(5), 793–807 (2019)

    Article  Google Scholar 

  20. Bhattacharya, I., et al.: CorrSigNet: learning CORRelated prostate cancer SIGnatures from radiology and pathology images for improved computer aided diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 315–325. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_31

    Chapter  Google Scholar 

  21. Bhattacharya, I., Seetharaman, A., Kunder, C., et al.: Selective identification and localization of indolent and aggressive prostate cancers via corrsignia: an MRI-pathology correlation and deep learning framework. Med. Image Anal. 75, 102288 (2022)

    Google Scholar 

  22. Chandar, S., Khapra, M.M., Larochelle, H., Ravindran, B.: Correlational neural networks. Neural Comput. 28(2), 257–285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  24. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  25. Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 95, 102026 (2022)

    Article  Google Scholar 

  26. Turkbey, B., et al.: Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76(3) (2019) 340–351

    Google Scholar 

  27. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  28. Hatamizadeh, A., Tang, Y., Nath, et al.: UNETR: transformers for 3D medical image segmentation. In: 2022 WACV, pp. 1748–1758 (2022)

    Google Scholar 

  29. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Bhattacharya .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 128 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharya, I. et al. (2023). MIC-CUSP: Multimodal Image Correlations for Ultrasound-Based Prostate Cancer Detection. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics