Skip to main content

Multi-task Learning for Hierarchically-Structured Images: Study on Echocardiogram View Classification

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

Echocardiography is a crucial and widely adopted imaging modality for diagnosing and monitoring cardiovascular diseases. Deep learning has been proven effective in analyzing medical images but is limited in echocardiograms due to the complexity of image acquisition and interpretation. One crucial initial step to address this is automatically identifying the correct echocardiogram video views. Several studies have used deep learning and traditional image-processing techniques for this task. The authors propose an ablation study on a multi-task learning scheme with a hierarchically structured model output that arranges views in a tree structure. The proposed model, named “Multi-task Residual Neural Network (MTRNN) with masked loss”, uses a conditional probabilistic training method and demonstrates superior performance for echocardiogram view classification. While the model has only been validated for the echocardiogram video classification task, it can be easily generalized to any medical image classification scenario with a hierarchical structure among the data labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balaji, G., Subashini, T., Chidambaram, N.: Automatic classification of cardiac views in echocardiogram using histogram and statistical features. Procedia Comput. Sci. 46, 1569–1576 (2015)

    Article  Google Scholar 

  2. Bannur, S., et al.: Hierarchical analysis of visual COVID-19 features from chest radiographs. ArXiv abs/2107.06618 (2021)

    Google Scholar 

  3. Charton, J., et al.: View classification of color doppler echocardiography via automatic alignment between doppler and b-mode imaging. In: Aylward, S., Noble, J.A., Hu, Y., Lee, S.L., Baum, Z., Min, Z. (eds.) ASMUS 2022. LNCS, pp. 64–71. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16902-1_7

    Chapter  Google Scholar 

  4. Chen, H., Miao, S., Xu, D., Hager, G.D., Harrison, A.P.: Deep hiearchical multi-label classification applied to chest X-ray abnormality taxonomies. CoRR abs/2009.05609 (2020). https://arxiv.org/abs/2009.05609

  5. Hsu, B.W.Y., Tseng, V.S.: Hierarchy-aware contrastive learning with late fusion for skin lesion classification. Comput. Methods Programs Biomed. 216, 106666 (2022)

    Google Scholar 

  6. Khaleel, M., Tavanapong, W., Wong, J., Oh, J., De Groen, P.: Hierarchical visual concept interpretation for medical image classification. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), pp. 25–30. IEEE (2021)

    Google Scholar 

  7. Khaleel, M., Tavanapong, W., Wong, J., Oh, J., de Groen, P.: Hierarchical visual concept interpretation for medical image classification. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), pp. 25–30 (2021). https://doi.org/10.1109/CBMS52027.2021.00012

  8. Kusunose, K.: Steps to use artificial intelligence in echocardiography. J. Echocardiogr. 19(1), 21–27 (2021)

    Article  Google Scholar 

  9. Liao, Z., et al.: Echocardiography view classification using quality transfer star generative adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019, Part II. LNCS, vol. 11765, pp. 687–695. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_76

    Chapter  Google Scholar 

  10. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R.: Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit. Med. 1(1), 6 (2018)

    Article  Google Scholar 

  11. Mitchell, C., et al.: Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American society of echocardiography. J. Am. Soc. Echocardiogr. 32(1), 1–64 (2019)

    Article  Google Scholar 

  12. Østvik, A., Smistad, E., Aase, S.A., Haugen, B.O., Lovstakken, L.: Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultras. Med. Biol. 45(2), 374–384 (2019)

    Article  Google Scholar 

  13. Otto, C.M.: Textbook of Clinical Echocardiography. Elsevier Health Sciences (2013)

    Google Scholar 

  14. Pham, H.H., Le, T.T., Tran, D.Q., Ngo, D.T., Nguyen, H.Q.: Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 437, 186–194 (2021)

    Article  Google Scholar 

  15. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning embeddings from semantic tasks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 1, pp. 6949–6956 (2019)

    Google Scholar 

  16. Seetharam, K., Raina, S., Sengupta, P.P.: The role of artificial intelligence in echocardiography. Curr. Cardiol. Rep. 22, 1–8 (2020)

    Article  Google Scholar 

  17. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Vaseli, H., et al.: Designing lightweight deep learning models for echocardiography view classification. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, pp. 93–99. SPIE (2019)

    Google Scholar 

  20. Wu, H., Bowers, D.M., Huynh, T.T., Souvenir, R.: Echocardiogram view classification using low-level features. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 752–755. IEEE (2013)

    Google Scholar 

  21. Zhang, Y., et al.: HKGB: an inclusive, extensible, intelligent, semi-auto-constructed knowledge graph framework for healthcare with clinicians’ expertise incorporated. Inf. Process. Manag. 57(6), 102324 (2020)

    Google Scholar 

  22. Zhao, J., Peng, Y., He, X.: Attribute hierarchy based multi-task learning for fine-grained image classification. Neurocomputing 395, 150–159 (2020)

    Article  Google Scholar 

  23. Zhu, X., Bain, M.: B-CNN: branch convolutional neural network for hierarchical classification. ArXiv (2017). https://doi.org/10.48550/ARXIV.1709.09890

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Charton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charton, J. et al. (2023). Multi-task Learning for Hierarchically-Structured Images: Study on Echocardiogram View Classification. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics