Skip to main content

Graph Convolutional Neural Networks for Automated Echocardiography View Recognition: A Holistic Approach

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

To facilitate diagnosis on cardiac ultrasound (US), clinical practice has established several standard views of the heart, which serve as reference points for diagnostic measurements and define viewports from which images are acquired. Automatic view recognition involves grouping those images into classes of standard views. Although deep learning techniques have been successful in achieving this, they still struggle with fully verifying the suitability of an image for specific measurements due to factors like the correct location, pose, and potential occlusions of cardiac structures. Our approach goes beyond view classification and incorporates a 3D mesh reconstruction of the heart that enables several more downstream tasks, like segmentation and pose estimation. In this work, we explore learning 3D heart meshes via graph convolutions, using similar techniques to learn 3D meshes in natural images, such as human pose estimation. As the availability of fully annotated 3D images is limited, we generate synthetic US images from 3D meshes by training an adversarial denoising diffusion model. Experiments were conducted on synthetic and clinical cases for view recognition and structure detection. The approach yielded good performance on synthetic images and, despite being exclusively trained on synthetic data, it already showed potential when applied to clinical images. With this proof-of-concept, we aim to demonstrate the benefits of graphs to improve cardiac view recognition that can ultimately lead to better efficiency in cardiac diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernard, O., et al.: Challenge on endocardial three-dimensional ultrasound segmentation. CREATIS, The MIDAS Journal (2014). https://doi.org/10.54294/j78w0v

  2. Cheng, L.H., Sun, X., van der Geest, R.J.: Contrastive learning for echocardiographic view integration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 340–349. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_33

    Chapter  Google Scholar 

  3. Gaggion, N., Mansilla, L., Milone, D.H., Ferrante, E.: Hybrid graph convolutional neural networks for landmark-based anatomical segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 600–610. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_57

    Chapter  Google Scholar 

  4. Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., McLeod, K.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Med. Imaging, 2783–2794 (2021). https://doi.org/10.1109/TMI.2021.3051806

  5. Gong, S., Chen, L., Bronstein, M., Zafeiriou, S.: Spiralnet++: a fast and highly efficient mesh convolution operator. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (CVPR) (2019)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. CoRR abs/2006.11239 (2020). https://arxiv.org/abs/2006.11239

  8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  9. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4496–4505 (2019). https://doi.org/10.1109/CVPR.2019.00463

  10. Kong, F., Wilson, N., Shadden, S.: A deep-learning approach for direct whole-heart mesh reconstruction. Med. Image Anal. 74, 102222 (2021). https://doi.org/10.1016/j.media.2021.102222

    Article  Google Scholar 

  11. Lang, R., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging, 16(3), 233–270 (2015). https://doi.org/10.1093/ehjci/jev014

  12. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  13. Li, M., et al.: Interacting attention graph for single image two-hand reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2761–2770 (2022)

    Google Scholar 

  14. Lin, J., Yuan, Y., Shao, T., Zhou, K.: Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  15. Nakao, M., Nakamura, M., Matsuda, T.: Image-to-graph convolutional network for 2D/3D deformable model registration of low-contrast organs. IEEE Trans. Med. Imaging 41(12), 3747–3761 (2022). https://doi.org/10.1109/TMI.2022.3194517

    Article  Google Scholar 

  16. Ouyang, D., et al.: Interpretable AI for beat-to-beat cardiac function assessment. Nature (2020). https://doi.org/10.1038/s41586-020-2145-8

  17. Pasdeloup, D., et al.: Real-time echocardiography guidance for optimized apical standard views. Ultrasound Med. Biol. 49(1), 333–346 (2023). https://doi.org/10.1016/j.ultrasmedbio.2022.09.006

    Article  Google Scholar 

  18. Rodero, C., et al.: Virtual cohort of 1000 synthetic heart meshes from adult human healthy population (2021). https://doi.org/10.5281/zenodo.4506930

  19. Rodero, C., et al.: Virtual cohort of adult healthy four-chamber heart meshes from CT images (2021). https://doi.org/10.5281/zenodo.4590294

  20. Stojanovski, D., Hermida, U., Muffoletto, M., Lamata, P., Beqiri, A., Gomez, A.: Efficient pix2vox++ for 3D cardiac reconstruction from 2d echo views. In: Aylward, S., Noble, J.A., Hu, Y., Lee, S.L., Baum, Z., Min, Z. (eds.) ASMUS 2022. LNCS, vol. 13565, pp. 86–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16902-1_9

    Chapter  Google Scholar 

  21. Østvik, A., Smistad, E., Aase, S.A., Haugen, B.O., Lovstakken, L.: Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med. Biol. 45(2), 374–384 (2019). https://doi.org/10.1016/j.ultrasmedbio.2018.07.024

    Article  Google Scholar 

  22. Thomas, S., Gilbert, A., Ben-Yosef, G.: Light-weight spatio-temporal graphs for segmentation and ejection fraction prediction in cardiac ultrasound, 380–390 (2022). https://doi.org/10.1007/9783031164408_37

  23. Tiago, C., Snare, S.R., Šprem, J., McLeod, K.: A domain translation framework with an adversarial denoising diffusion model to generate synthetic datasets of echocardiography images. IEEE Access 11, 17594–17602 (2023). https://doi.org/10.1109/ACCESS.2023.3246762

    Article  Google Scholar 

  24. Wu, L., et al.: Standard echocardiographic view recognition in diagnosis of congenital heart defects in children using deep learning based on knowledge distillation. Front. Pediatrics 9 (2022). https://doi.org/10.3389/fped.2021.770182

  25. Zhang, J., et al.: Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16), 1623–1635 (2018). https://doi.org/10.1161/CIRCULATIONAHA.118.034338

    Article  Google Scholar 

Download references

Acknowledgment:

We thank Anna Novikova and Daria Kulikova for their valuable clinical consultation and for annotating the training data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarina Thomas .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 7865 KB)

Supplementary material 2 (pdf 14232 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, S. et al. (2023). Graph Convolutional Neural Networks for Automated Echocardiography View Recognition: A Holistic Approach. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics