Skip to main content

Leveraging Shape and Spatial Information for Spontaneous Preterm Birth Prediction

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

Spontaneous preterm birth prediction from transvaginal ultrasound images is a challenging task of profound interest in gynecological obstetrics. Existing works are often validated on small datasets and may lack validation of model calibration and interpretation. In this paper, we present a comprehensive study of methods for predicting preterm birth from transvaginal ultrasound using a large clinical dataset. We propose a shape- and spatially-aware network that leverages segmentation predictions and pixel spacing information as additional input to enhance predictions. Our model demonstrates competitive performance on our benchmark, providing additional interpretation and achieving the highest performance across both clinical and machine learning baselines. Through our evaluation, we provide additional insights which we hope may lead to more accurate predictions of preterm births going forwards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, W.S., Madny, E., Habash, Y., Ibrahim, Z., Morsy, A., Said, M.: Ultrasonographic wall thickness measurement of the upper and lower uterine segments in the prediction of the progress of preterm labour. Clin. Exp. Obstetr. Gynecol. 42(3), 331–335 (2015)

    Article  Google Scholar 

  2. Akazawa, M., Hashimoto, K.: Prediction of preterm birth using artificial intelligence: a systematic review. J. Obstetr. Gynaecol. 42(6), 1662–1668 (2022)

    Article  Google Scholar 

  3. Baños, N., et al.: Quantitative analysis of cervical texture by ultrasound in mid-pregnancy and association with spontaneous preterm birth. Ultrasound Obstetr. Gynecol. 51(5), 637–643 (2018)

    Article  Google Scholar 

  4. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE TMI 36(11) (2017)

    Google Scholar 

  5. Burgos-Artizzu, X.P., et al.: Mid-trimester prediction of spontaneous preterm birth with automated cervical quantitative ultrasound texture analysis and cervical length: a prospective study. Sci. Rep. 11(1), 1–7 (2021)

    Article  Google Scholar 

  6. Bustamante, D., et al.: Cervix ultrasound texture analysis to differentiate between term and preterm birth pregnancy: a machine learning approach. In: IEEE IUS, pp. 1–4. IEEE IUS (2022)

    Google Scholar 

  7. Coutinho, C., et al.: Isuog practice guidelines: role of ultrasound in the prediction of spontaneous preterm birth. Ultrasound Obstetr. Gynecol. Off. J. Int. Soc. Ultrasound Obstetr. Gynecol. 60(3), 435–456 (2022)

    Article  Google Scholar 

  8. Dagle, A.B., et al.: Automated segmentation of cervical anatomy to interrogate preterm birth. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds.) PIPPI 2022. LNCS, vol. 13575, pp. 48–59. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17117-8_5

    Chapter  Google Scholar 

  9. Dziadosz, M., et al.: Uterocervical angle: a novel ultrasound screening tool to predict spontaneous preterm birth. Am. J. Obstetr. Gynecol. 215(3) (2016)

    Google Scholar 

  10. Farràs Llobet, A., et al.: The uterocervical angle and its relationship with preterm birth. J. Maternal-Fetal Neonatal Med. 31(14), 1881–1884 (2018)

    Article  Google Scholar 

  11. Fiset, S., Martel, A., Glanc, P., Barrett, J., Melamed, N.: Prediction of spontaneous preterm birth among twin gestations using machine learning and texture analysis of cervical ultrasound images. U Toronto Med. J. 96(1) (2019)

    Google Scholar 

  12. Giakoumoglou, N.: Pyfeats (2021). https://doi.org/10.5281/zenodo.6783286

  13. Hemming, V.G., Overall, J.C., Jr., Britt, M.R.: Nosocomial infections in a newborn intensive-care unit: results of forty-one months of surveillance. N. Engl. J. Med. 294(24), 1310–1316 (1976)

    Article  Google Scholar 

  14. Hermann, K., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in convolutional neural networks. In: NeurIPS, vol. 33, pp. 19000–19015 (2020)

    Google Scholar 

  15. Lin, M., Feragen, A., Bashir, Z., Tolsgaard, M.G., Christensen, A.N.: I saw, I conceived, I concluded: progressive concepts as bottlenecks. arXiv:2211.10630 (2022)

  16. Lin, M., et al.: DTU-net: learning topological similarity for curvilinear structure segmentation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) IPMI 2023. LNCS, vol. 13939, pp. 654–666. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_50

    Chapter  Google Scholar 

  17. Luechathananon, S., Songthamwat, M., Chaiyarach, S.: Uterocervical angle and cervical length as a tool to predict preterm birth in threatened preterm labor. Int. J. Women’s Health, 153–159 (2021)

    Google Scholar 

  18. Mikolaj, K., et al.: Removing confounding information from fetal ultrasound images. arXiv:2303.13918 (2023)

  19. Petersen, E., Ganz, M., Holm, S., Feragen, A.: On (assessing) the fairness of risk score models. In: FAccT, pp. 817–829 (2023)

    Google Scholar 

  20. Pizzella, S., El Helou, N., Chubiz, J., Wang, L.V., Tuuli, M.G., England, S.K., Stout, M.J.: Evolving cervical imaging technologies to predict preterm birth. Seminars Immunopathol. 42, 385–396 (2020). Springer

    Google Scholar 

  21. Sepúlveda-Martínez, A., Diaz, F., Muñoz, H., Valdés, E., Parra-Cordero, M.: Second-trimester anterior cervical angle in a low-risk population as a marker for spontaneous preterm delivery. Fetal Diagn. Ther. 41(3), 220–225 (2017)

    Article  Google Scholar 

  22. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  23. Ven, V.D., et al.: The capacity of mid-pregnancy cervical length to predict preterm birth in low-risk women: a national cohort study. Acta Obstet. Gynecol. Scand. 94(11), 1223–1234 (2015)

    Article  Google Scholar 

  24. Vogel, J.P., Chawanpaiboon, S., Moller, A.B., Watananirun, K., Bonet, M., Lumbiganon, P.: The global epidemiology of preterm birth. Best Pract. Res. Clin. Obstetr. Gynaecol. 52, 3–12 (2018)

    Article  Google Scholar 

  25. Włodarczyk, T., et al.: Spontaneous preterm birth prediction using convolutional neural networks. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 274–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_27

    Chapter  Google Scholar 

  26. Włodarczyk, T., et al.: Machine learning methods for preterm birth prediction: a review. Electronics 10(5), 586 (2021)

    Article  Google Scholar 

  27. Włodarczyk, T., et al.: Estimation of preterm birth markers with U-net segmentation network. In: Wang, Q., et al. (eds.) PIPPI/SUSI -2019. LNCS, vol. 11798, pp. 95–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_11

    Chapter  Google Scholar 

  28. Yang, Q., et al.: Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: a systematic review. Acta Obstet. Gynecol. Scand. 102(1), 7–14 (2023)

    Article  Google Scholar 

  29. Zuo, J., McFarlin, B.L., Simpson, D.G., O’Brien, W.D., Han, A.: Automated region of interest placement on cervical ultrasound images for assessing preterm birth risk. J. Acoust. Soc. Am. 153(3), A352–A352 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pioneer Centre for AI (DNRF grant nr P1), the DIREC project EXPLAIN-ME (9142-00001B), and the Novo Nordisk Foundation through the Center for Basic Machine Learning Research in Life Science (NNF20OC0062606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevas Pegios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pegios, P. et al. (2023). Leveraging Shape and Spatial Information for Spontaneous Preterm Birth Prediction. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics