Skip to main content

DIFF\(\cdot \)3: A Latent Diffusion Model for the Generation of Synthetic 3D Echocardiographic Images and Corresponding Labels

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2023)

Abstract

Large amounts of labelled data are typically needed to develop robust deep learning methods for medical image analysis. However, issues related to the high costs of acquisition, time-consuming analysis, and patient privacy, have limited the number of publicly available datasets. Recently, latent diffusion models have been employed to generate synthetic data in several fields. Compared to other imaging modalities, the manipulation of 3D echocardiograms is particularly challenging due to the higher dimensionality and complex noise characteristics, and lack of objective ground truth. We present DIFF\(\cdot \)3, a latent diffusion model for synthesizing realistic 3D echocardiograms with high-quality labels from matching cardiovascular magnetic resonance imaging (CMR) scans. Using in vivo 3D echocardiograms from 134 participants and corresponding registered labels derived from CMR, source images and labels are initially compressed by a variational autoencoder, followed by diffusion in the latent space. Synthetic datasets were subsequently generated by randomly sampling from the latent distribution, and evaluated in terms of fidelity and diversity. DIFF\(\cdot \)3 may provide an effective and more efficient means of generating labelled 3D echocardiograms to supplement real patient data.

E. Ferdian and D. Zhao—Joint first authorship

M. P. Nash and A. A. Young—Joint senior authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Code and data availability

Source code can be accessed in https://github.com/EdwardFerdian/diff-3. Synthetic datasets are available upon request.

References

  1. Akrout, M., et al.: Diffusion-based Data Augmentation for Skin Disease Classification: Impact Across Original Medical Datasets to Fully Synthetic Images (2023). arXiv:2301.04802

  2. Alessandrini, M., et al.: A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: methodology and open-access database. IEEE Trans. Medical Imaging 34(7), 1436–1451 (2015). https://doi.org/10.1109/TMI.2015.2396632

  3. Alzubaidi, L.,et al.: MedNet: pre-trained convolutional neural network model for the medical imaging tasks. CoRR abs/2110.0 (2021) arXiv:2110.06512

  4. Chambon, P., Bluethgen, C., Langlotz, C.P., Chaudhari, A.: Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains (10 2022). arxiv:2210.04133

  5. DuMont Schütte, A., et al.: Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation. NPJ Digital Medicine 4(1), 141 (2021). https://doi.org/10.1038/s41746-021-00507-3

  6. Evain, E., Faraz, K., Grenier, T., Garcia, D., Craene, M.D., Bernard, O.: A pilot study on convolutional neural networks for motion estimation from ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2565–2573 (2020). https://doi.org/10.1109/TUFFC.2020.2976809

    Article  Google Scholar 

  7. Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., Mcleod, K.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Med. Imaging 40(10), 2783–2794 (10 2021). https://doi.org/10.1109/TMI.2021.3051806, https://ieeexplore.ieee.org/document/9324763/

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6629–6640. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. CoRR abs/2006.1 (2020). arXiv:2006.11239

  10. Hong, S.: 3D-StyleGAN: a style-based generative adversarial network for generative modeling of three-dimensional medical images. In: Engelhardt, S., et al. (eds.) DGM4MICCAI/DALI -2021. LNCS, vol. 13003, pp. 24–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88210-5_3

    Chapter  Google Scholar 

  11. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18(2), 203–211 (2021) https://doi.org/10.1038/s41592-020-01008-z

  12. Jabri, A., Fleet, D.J., Chen, T.: Scalable Adaptive Computation for Iterative Generation. arXiv:2212.1 (2022)

  13. Khader, F., et al.: Denoising diffusion probabilistic models for 3D medical image generation. Sci. Reports 13(1), 7303 (2023). https://doi.org/10.1038/s41598-023-34341-2

  14. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved Precision and Recall Metric for Assessing Generative Models. In: NeurIPS 2019. arXiv (2019). arXiv:1904.06991

  15. Lucidrains: Denoising Diffusion Probabilistic Model, in Pytorch (2020). https://github.com/lucidrains/denoising-diffusion-pytorch

  16. Moghadam, P.A., et al.: A Morphology Focused Diffusion Probabilistic Model for Synthesis of Histopathology Images (2022). arXiv:2209.13167

  17. Østivk, A., et al.: Myocardial function imaging in echocardiography using deep learning. IEEE Trans. Med. Imaging 40(5), 1340–1351 (2021). https://doi.org/10.1109/TMI.2021.3054566

    Article  Google Scholar 

  18. Pinaya, W.H.L., et al.: Brain imaging generation with latent diffusion models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings, pp. 117–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18576-2_12

    Chapter  Google Scholar 

  19. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-Resolution Image Synthesis with Latent Diffusion Models. CoRR abs/2112.1 (2021) arXiv:2112.10752

  20. Song, J., Meng, C., Ermon, S.: Denoising Diffusion Implicit Models (2020). arXiv:2010.02502

  21. Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., Batmanghelich, K.: Hierarchical amortized GAN for 3D high resolution medical image synthesis. IEEE J. Biomed. Health Inform. 26(8), 3966–3975 (2022). https://doi.org/10.1109/JBHI.2022.3172976

    Article  Google Scholar 

  22. Thambawita, V., et al.: SinGAN-Seg: Synthetic training data generation for medical image segmentation. PLOS ONE 17(5), e0267976 (2022). https://doi.org/10.1371/journal.pone.0267976

  23. Taigo, C., et al.: A data augmentation pipeline to generate synthetic labeled datasets of 3D echocardiography images using a GAN. IEEE Access 10, 98803–98815 (2022). https://doi.org/10.1109/ACCESS.2022.3207177

    Article  Google Scholar 

  24. Trabucco, B., Doherty, K., Gurinas, M., Salakhutdinov, R.: Effective Data Augmentation With Diffusion Models (2023). arXiv:2302.07944

  25. Xu, X., Kapse, S., Gupta, R., Prasanna, P.: ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology Image Analysis (2023)

    Google Scholar 

  26. youngjung: improved-precision-and-recall-metric-pytorch (2019). https://github.com/youngjung/improved-precision-and-recall-metric-pytorch

  27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (2018). arXiv:1801.03924

  28. Zhao, D., et al.: MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging. Front. Cardiovasc. Med. 9 (2023). https://doi.org/10.3389/fcvm.2022.1016703

  29. Zhou, Y., et al.: A framework for the generation of realistic synthetic cardiac ultrasound and magnetic resonance imaging sequences from the same virtual patients. IEEE Trans. Med. Imaging 37(3), 741–754 (2018). https://doi.org/10.1109/TMI.2017.2708159

Download references

Acknowledgements

We gratefully acknowledge the staff at the Centre for Advanced MRI at the University of Auckland for their expertise and assistance with the imaging components of this study.

Funding

This study was funded by the Health Research Council of New Zealand (programme grant 17/608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferdian, E. et al. (2023). DIFF\(\cdot \)3: A Latent Diffusion Model for the Generation of Synthetic 3D Echocardiographic Images and Corresponding Labels. In: Wolterink, J.M., Svoboda, D., Zhao, C., Fernandez, V. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2023. Lecture Notes in Computer Science, vol 14288. Springer, Cham. https://doi.org/10.1007/978-3-031-44689-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44689-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44688-7

  • Online ISBN: 978-3-031-44689-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics