Skip to main content

Super-Resolution Segmentation Network for Inner-Ear Tissue Segmentation

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14288))

Included in the following conference series:

  • 385 Accesses

Abstract

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing loss. Several groups have proposed computational models of the cochlea in order to study the neural activation patterns in response to CI stimulation. However, most of the current implementations either rely on high-resolution histological images that cannot be customized for CI users or CT images that lack the spatial resolution to show cochlear structures. In this work, we propose to use a deep learning-based method to obtain µCT level tissue labels using patient CT images. Experiments showed that the proposed super-resolution segmentation architecture achieved very good performance on the inner-ear tissue segmentation. Our best-performing model (0.871) outperformed the UNet (0.746), VNet (0.853), nnUNet (0.861), TransUNet (0.848), and SRGAN (0.780) in terms of mean dice score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollahi, A., Pradhan, B., Alamri, A.: Vnet: An end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data. IEEE Access 8, 179424–179436 (2020)

    Article  Google Scholar 

  2. Cakir, A., Dawant, B.M., Noble, J.H.: Development of a \(\upmu \)CT-based patient-specific model of the electrically stimulated cochlea. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 773–780. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_88

    Chapter  Google Scholar 

  3. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Fan, Y., Zhang, D., Wang, J., Noble, J.H., Dawant, B.M.: Combining model-and deep-learning-based methods for the accurate and robust segmentation of the intra-cochlear anatomy in clinical head ct images. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 315–322. SPIE (2020)

    Google Scholar 

  6. Frijns, J.H., Briaire, J.J., Grote, J.J.: The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otology Neurotol. 22(3), 340–349 (2001)

    Article  Google Scholar 

  7. Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z., Cheng, M.M., Hu, S.M.: Segnext: rethinking convolutional attention design for semantic segmentation. arXiv preprint arXiv:2209.08575 (2022)

  8. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  9. Iglesias, J.E., et al.: Joint super-resolution and synthesis of 1 mm isotropic mp-rage volumes from clinical MRI exams with scans of different orientation, resolution and contrast. Neuroimage 237, 118206 (2021)

    Article  Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Kalkman, R.K., Briaire, J.J., Frijns, J.H.: Current focussing in cochlear implants: an analysis of neural recruitment in a computational model. Hear. Res. 322, 89–98 (2015)

    Article  Google Scholar 

  12. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  13. Li, Y., Sixou, B., Peyrin, F.: A review of the deep learning methods for medical images super resolution problems. Irbm 42(2), 120–133 (2021)

    Article  Google Scholar 

  14. Malherbe, T., Hanekom, T., Hanekom, J.: Constructing a three-dimensional electrical model of a living cochlear implant user’s cochlea. Inter. J. Numerical Methods Biomed. Eng. 32(7), e02751 (2016)

    Article  Google Scholar 

  15. NIDCD: Nidcd nidcd fact sheet, hearing and balance: cochlear implants (2019). www.nidcd.nih.gov/health/cochlear-implants, (Accessed 10 Jan 2023)

  16. Noble, J.H., Gifford, R.H., Hedley-Williams, A.J., Dawant, B.M., Labadie, R.F.: Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol. Neurotol. 19(6), 400–411 (2014)

    Article  Google Scholar 

  17. Noble, J.H., et al.: Initial results with image-guided cochlear implant programming in children. Otology Neurotol. Official Publicat. Am. Otolog. Soc. Am. Neurotol. Soc. Euro. Acad. Otology Neurotol. 37(2), e63 (2016)

    Google Scholar 

  18. Noble, J.H., Labadie, R.F., Gifford, R.H., Dawant, B.M.: Image-guidance enables new methods for customizing cochlear implant stimulation strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 21(5), 820–829 (2013)

    Article  Google Scholar 

  19. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Park, J., Hwang, D., Kim, K.Y., Kang, S.K., Kim, Y.K., Lee, J.S.: Computed tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 63(14), 145011 (2018)

    Article  Google Scholar 

  21. Qiu, D., Cheng, Y., Wang, X., Zhang, X.: Multi-window back-projection residual networks for reconstructing covid-19 ct super-resolution images. Comput. Methods Programs Biomed. 200, 105934 (2021)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_1

    Chapter  Google Scholar 

  24. Whiten, D.M.: Electro-anatomical models of the cochlear implant. Ph.D. thesis, Massachusetts Institute of Technology (2007)

    Google Scholar 

  25. You, C., et al.: Ct super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle). IEEE Trans. Med. Imaging 39(1), 188–203 (2019)

    Article  Google Scholar 

  26. Zhang, D., Banalagay, R., Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Two-level training of a 3d u-net for accurate segmentation of the intra-cochlear anatomy in head cts with limited ground truth training data. In: Medical Imaging 2019: Image Processing, vol. 10949, pp. 45–52. SPIE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziteng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Fan, Y., Lou, A., Noble, J.H. (2023). Super-Resolution Segmentation Network for Inner-Ear Tissue Segmentation. In: Wolterink, J.M., Svoboda, D., Zhao, C., Fernandez, V. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2023. Lecture Notes in Computer Science, vol 14288. Springer, Cham. https://doi.org/10.1007/978-3-031-44689-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44689-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44688-7

  • Online ISBN: 978-3-031-44689-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics