Skip to main content

Unsupervised Liver Tumor Segmentation with Pseudo Anomaly Synthesis

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2023)

Abstract

Liver lesion segmentation is a challenging task. Liver lesions often appear as regional heterogeneity in various shapes and intensities, while collecting a comprehensive dataset for supervised learning is costly. To address this issue, this study formulates unsupervised liver tumor segmentation as an anomaly segmentation problem and presents a pseudo-supervised anomaly segmentation solution with synthetic anomalies. In this regard, we investigate two fundamental, yet under-explored questions: (1) how to generate anomalies? and (2) how to address a covariant shift between synthesis data and real tumor samples in model training? To the first question, instead of fabricating anomalies approximating the known abnormal patterns, we propose to generate anomalies spreading over a broader spectrum to encourage a model to learn the cluster boundary of normal samples. Our rationale toward the second question suggests light training on synthesis data for model generalizability. Based on these insights, this study incorporates a random-shaped anomaly synthesis module and two-stage training strategy into the DRAEM architecture for unsupervised liver tumor segmentation. Experiments on the public benchmark show that the proposed method trained on various synthetic anomalies has good generalizability on real tumor and achieves a comparable performance to prior arts. Our code is available at: https://github.com/nono-zz/LiTs-Segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akçay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-ganomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019)

    Google Scholar 

  2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  3. Bilic, P., et al.: The liver tumor segmentation benchmark (LITS). arXiv:1901.04056 (2019)

  4. Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35

    Chapter  Google Scholar 

  5. Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9737–9746 (2022)

    Google Scholar 

  6. Deng, H., Li, X.: Self-supervised anomaly detection with random-shape pseudo-outliers. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4768–4772 (2022)

    Google Scholar 

  7. Dey, R., Hong, Y.: ASC-Net: adversarial-based selective network for unsupervised anomaly segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 236–247 (2021)

    Google Scholar 

  8. Goodfellow, I.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  10. Hu, Q., et al.: Label-free liver tumor segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7422–7432 (2023)

    Google Scholar 

  11. Kascenas, A., Pugeault, N., O’Neil, A.Q.: Denoising autoencoders for unsupervised anomaly detection in brain MRI. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)

  14. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: MICCAI multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge, vol. 5, p. 12 (2015)

    Google Scholar 

  15. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)

    Google Scholar 

  16. Li, H., Iwamoto, Y., Han, X., Lin, L., Hu, H., Chen, Y.W.: An accurate unsupervised liver lesion detection method using pseudo-lesions. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 214–223. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_21

    Chapter  Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

    Google Scholar 

  19. Qiao, S., Wang, H., Liu, C., Shen, W., Yuille, A.: Micro-batch training with batch-channel normalization and weight standardization. arXiv:1903.10520 (2019)

  20. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv:1710.05941 (2017)

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2022)

    Google Scholar 

  23. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14902–14912 (2021)

    Google Scholar 

  24. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157 (2017)

    Google Scholar 

  25. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation. arXiv:2011.04197 (2020)

  26. Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., Kainz, B.: Detecting outliers with poisson image interpolation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 581–591 (2021)

    Google Scholar 

  27. Wang, M., et al.: Unsupervised anomaly detection with local-sensitive VQVAE and global-sensitive transformers. arXiv:2303.17505 (2023)

  28. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 35–45 (2022)

    Google Scholar 

  29. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  30. Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C.G.: AnoDDPM: anomaly detection with denoising diffusion probabilistic models using simplex noise. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 650–656 (2022)

    Google Scholar 

  31. Yao, Q., Xiao, L., Liu, P., Zhou, S.K.: Label-free segmentation of COVID-19 lesions in lung CT. IEEE Trans. Med. Imaging 40(10), 2808–2819 (2021)

    Article  Google Scholar 

  32. Zavrtanik, V., Kristan, M., Skočaj, D.: DRAEM-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, p. 8330–8339 (2021)

    Google Scholar 

  33. Zhang, X., Xie, W., Huang, C., Zhang, Y., Wang, Y.: Self-supervised tumor segmentation through layer decomposition. arXiv:2109.03230 (2021)

  34. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised anomaly localization using variational auto-encoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 289–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 752 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Deng, H., Li, X. (2023). Unsupervised Liver Tumor Segmentation with Pseudo Anomaly Synthesis. In: Wolterink, J.M., Svoboda, D., Zhao, C., Fernandez, V. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2023. Lecture Notes in Computer Science, vol 14288. Springer, Cham. https://doi.org/10.1007/978-3-031-44689-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44689-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44688-7

  • Online ISBN: 978-3-031-44689-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics