Skip to main content

Enhancing Detailed Feedback to Chinese Writing Learners Using a Soft-Label Driven Approach and Tag-Aware Ranking Model

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14302))

  • 1100 Accesses

Abstract

This paper focuses on providing detailed and specific feedback for Chinese writing learners, which is challenging due to the uncertainty of the feedback space. 30 common tags are identified based on clustering 363k comment phrases. By predicting the corresponding tags for an input, learners can gain insights on how to improve their work. However, the various tag types and non-exhaustive annotation pose challenges for model training. To address this, we propose a soft-label-driven approach to construct a more accurate relationship between samples and the tag space. We use a relevance matrix between different tags to adjust the positive label’s confidence across the entire tag space. Additionally, we propose a tag-aware regression-based ranking model that further improves performance. Our experiments demonstrate that the proposed soft-label approach performs better than a hard-label approach, and the proposed ranking model enhances performance. Our data and code are available at: https://github.com/Zhe0311/DetailedFeedback2ChineseWritingLearners.

Y. Cai—Work was done when interning at Microsoft Research Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli.

  2. 2.

    http://www.leleketang.com/zuowen/.

References

  1. Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109, 719–760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Cao, N., Zhang, T., Shi, X., Jin, H.: Posistive-unlabeled learning via optimal transport and margin distribution

    Google Scholar 

  5. Chang, W.C., Yu, H.F., Zhong, K., Yang, Y., Dhillon, I.S.: Taming pretrained transformers for extreme multi-label text classification. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3163–3171 (2020)

    Google Scholar 

  6. Das Gupta, M., Srinivasa, S., Antony, M., et al.: Kl divergence based agglomerative clustering for automated vitiligo grading. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2700–2709 (2015)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Dong, F., Zhang, Y., Yang, J.: Attention-based recurrent convolutional neural network for automatic essay scoring. In: Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pp. 153–162 (2017)

    Google Scholar 

  9. Garg, S., Wu, Y., Smola, A.J., Balakrishnan, S., Lipton, Z.: Mixture proportion estimation and PU learning: a modern approach. Adv. Neural. Inf. Process. Syst. 34, 8532–8544 (2021)

    Google Scholar 

  10. Goldberger, J., Gordon, S., Greenspan, H., et al.: An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures. In: ICCV, vol. 3, pp. 487–493 (2003)

    Google Scholar 

  11. Gong, J., et al.: IFlyEA: a Chinese essay assessment system with automated rating, review generation, and recommendation. In: Joint Conference on Natural Language Processing: System Demonstrations, pp. 240–248. Association for Computational Linguistics, Online, August 2021. https://doi.org/10.18653/v1/2021.acl-demo.29, https://aclanthology.org/2021.acl-demo.29

  12. Hussein, M.A., Hassan, H., Nassef, M.: Automated language essay scoring systems: a literature review. PeerJ Comput. Sci. 5, e208 (2019)

    Article  Google Scholar 

  13. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–944 (2016)

    Google Scholar 

  14. Ke, Z., Ng, V.: Automated essay scoring: a survey of the state of the art. In: IJCAI, vol. 19, pp. 6300–6308 (2019)

    Google Scholar 

  15. Kiryo, R., Niu, G., Du Plessis, M.C., Sugiyama, M.: Positive-unlabeled learning with non-negative risk estimator. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. OpenAI: ChatGPT (2022). https://openai.com/blog/chatgpt

  17. Ponnoprat, D.: Differential privacy of Dirichlet posterior sampling. CoRR abs/2110.01984 (2021). https://arxiv.org/abs/2110.01984

  18. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: partitioned label trees for extreme classification with application to dynamic search advertising. In: Proceedings of the 2018 World Wide Web Conference, pp. 993–1002 (2018)

    Google Scholar 

  19. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  20. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  21. Ramesh, D., Sanampudi, S.K.: An automated essay scoring systems: a systematic literature review. Artif. Intell. Rev. 55(3), 2495–2527 (2022)

    Article  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Wang, Y., Wei, Z., Zhou, Y., Huang, X.J.: Automatic essay scoring incorporating rating schema via reinforcement learning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 791–797 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoguang Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y. et al. (2023). Enhancing Detailed Feedback to Chinese Writing Learners Using a Soft-Label Driven Approach and Tag-Aware Ranking Model. In: Liu, F., Duan, N., Xu, Q., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2023. Lecture Notes in Computer Science(), vol 14302. Springer, Cham. https://doi.org/10.1007/978-3-031-44693-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44693-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44692-4

  • Online ISBN: 978-3-031-44693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics