Abstract
The growing adoption of smart cities technologies provides local governments with a unique opportunity to leverage a wide range of digital technologies to create more efficient and more effective digital services. Such services provide clear benefits for citizens in terms of accessibility within urban areas and overall quality of life. However, smart cities applications tend to rely on citizens’ generated data that is typically analysed to further improve service delivery. The collection and use of this data may raise potential privacy concerns for citizens as they are often unaware of how and where the data is stored, and how it will be used and protected. This paper presents a bibliometric analysis of the existing literature related to privacy and smart cities, provides a brief summary and the main topics that have been addressed in the academic literature. The findings from this study are of interest to academic researchers but could also inform local governments and policymakers’ approach to smart cities technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ismagilova, E., Hughes, L., Rana, N.P., Dwivedi, Y.K.: Security, privacy and risks within smart cities: literature review and development of a smart city interaction framework. Inf. Syst. Front., 1–22 (2020)
Anisetti, M., Ardagna, C., Bellandi, V., Cremonini, M., Frati, F., Damiani, E.: Privacy-aware big data analytics as a service for public health policies in smart cities. Sustain. Cities Soc. 39, 68–77 (2018)
Powell, A.: Datafication, transparency, and good governance of the data city. In: Digital Enlightenment Yearbook, pp. 215–224 (2014)
Van Zoonen, L.: Privacy concerns in smart cities. Gov. Inf. Q. 33(3), 472–480 (2016)
Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. J. Internet Serv. Appl. 6(1), 1–15 (2015)
Li, Y., Dai, W., Ming, Z., Qiu, M.: Privacy protection for preventing data over-collection in smart city. IEEE Trans. Comput. 65(5), 1339–1350 (2015)
Martínez-Ballesté, A., Pérez-Martínez, P.A., Solanas, A.: The pursuit of citizens’ privacy: a privacy-aware smart city is possible. IEEE Commun. Mag. 51(6), 136–141 (2013)
Khan, Z., Pervez, Z., Ghafoor, A.: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp. 806–811. IEEE (2014)
Rebollo-Monedero, D., Bartoli, A., Hernández-Serrano, J., Forné, J., Soriano, M.: Reconciling privacy and efficient utility management in smart cities. Trans. Emerg. Telecommun. Technol. 25(1), 94–108 (2014)
Beran, S., Pignotti, E., Edwards, P.: Trusted tiny things: making devices in smart cities more transparent. In: Proceedings of the Fifth Workshop on Semantics for Smarter Cities—A Workshop at the 13th International Semantic Web Conference (ISWC 2014). CEUR-WS (2014)
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M.: How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285–296 (2021)
Broadus, R.N.: Toward a definition of bibliometrics. Scientometrics 12(5–6):373–379 (1987)
Pritchard, A.: Statistical bibliography or bibliometrics. J. Doc 25(4), 348–349 (1969)
Bertello, A., De Bernardi, P., Ricciardi, F.: Open innovation: status quo and quo vadis-an analysis of a research field. Rev. Manager. Sci., 1–51 (2023)
Van Eck, N., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)
Van Eck N.J., Waltman, L., van den Berg, J., Kaymak, U.: Visualizing the computational intelligence field [Application Notes]. IEEE Computat. Intell. Mag. 1(4), 6–10 (2006). https://doi.org/10.1109/MCI.2006.329702
De Bernardi, P., Bertello, A., Forliano, C., Orlandi, L.B.: Beyond the “ivory tower”. Comparing academic and non-academic knowledge on social entrepreneurship. Int. Entrepr. Manage. J., 1–34 (2021)
Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing. In: 2012 International Conference on Computer Science and Electronics Engineering, vol. 1, pp. 647–651. IEEE (2012)
Squicciarini, A., Sundareswaran, S., Lin, D.: Preventing information leakage from indexing in the cloud. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 188–195. IEEE (2010)
Shen, Z., Li, L., Yan, F., Wu, X.: Cloud computing system based on trusted computing platform. In: 2010 International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 942–945. IEEE (2010)
Neisse, R., Holling, D., Pretschner, A.: Implementing trust in cloud infrastructures. In: 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 524–533. IEEE (2011)
Hakak, S., Khan, W.Z., Gilkar, G.A., Imran, M., Guizani, N.: Securing smart cities through blockchain technology: architecture, requirements, and challenges. IEEE Network 34(1), 8–14 (2020)
Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., Ni, W.: PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 88, 101653 (2020)
Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Integration of blockchain and cloud of things: architecture, applications and challenges. IEEE Commun. Surv. Tutor. 22(4), 2521–2549 (2020)
Rahman, M.A., Rashid, M.M., Hossain, M.S., Hassanain, E., Alhamid, M.F., Guizani, M.: Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart city. IEEE Access 7, 18611–18621 (2019)
Malik, R., Visvizi, A., Troisi, O., Grimaldi, M.: Smart services in smart cities: insights from science mapping analysis. Sustainability 14(11), 6506 (2022)
Kocabaş, Ö., Soyata, T.: Medical data analytics in the cloud using homomorphic encryption. In: E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications, pp. 751–768. IGI Global (2016)
Dwivedi, A.D., Srivastava, G., Dhar, S., Singh, R.: A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 19(2), 326 (2019)
Nguyen, D.C., Ding, M., Pham, Q.V., Pathirana, P.N., Le, L.B., Seneviratne, A., Li, J., Niyato, D., Poor, H.V.: Federated learning meets blockchain in edge computing: opportunities and challenges. IEEE Internet Things J. 8(16), 12806–12825 (2021)
Cui, L., Xie, G., Qu, Y., Gao, L., Yang, Y.: Security and privacy in smart cities: challenges and opportunities. IEEE Access 6, 46134–46145 (2018)
Angelidou, M.: The role of smart city characteristics in the plans of fifteen cities. J. Urban Technol. 24(4), 3–28 (2017)
Alter, S.: Making sense of smartness in the context of smart devices and smart systems. Inf. Syst. Front. 22(2), 381–393 (2020)
Polese, F., Troisi, O., Grimaldi, M., Loia, F.: Reinterpreting governance in smart cities: an ecosystem-based view. In: Smart Cities and the un SDGs, pp. 71–89. Elsevier (2021)
Troisi, O., Visvizi, A., Grimaldi, M.: The different shades of innovation emergence in smart service systems: the case of Italian cluster for aerospace technology. J. Bus. Ind. Mark. (2021)
Alamaniotis, M., Tsoukalas, L.H., Buckner, M.: Privacy-driven electricity group demand response in smart cities using particle swarm optimization. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016, pp. 946–953. IEEE (2017)
Nam, T., Pardo, T.A.: Smart city as urban innovation: focusing on management, policy, and context. In: Proceedings of the 5th International Conference on Theory and Practice of Electronic Governance, pp. 185–194 (2011)
Baig, Z.A., Szewczyk, P., Valli, C., Rabadia, P., Hannay, P., Chernyshev, M., Johnstone, M., Kerai, P., Ibrahim, A., Sansurooah, K., Syed, N., Peacock, M.: Future challenges for smart cities: cyber-security and digital forensics. Digit. Investig. 22, 3–13 (2017)
Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., Shen, X.S.: Security and privacy in smart city applications: Challenges and solutions. IEEE Commun. Mag. 55(1), 122–129 (2017)
Kashef, M., Visvizi, A., Troisi, O.: Smart city as a smart service system: human-computer interaction and smart city surveillance systems. Comput. Hum. Behav. 124, 106923 (2021)
Rashid, M.M., Kamruzzaman, J., Hassan, M.M., Imam, T., Gordon, S.: Cyberattacks detection in IoT-based smart city applications using machine learning techniques. Int. J. Environ. Res. Public Health 17(24), 9347 (2020)
Luo, X., Zhang, D., Yang, L.T., Liu, J., Chang, X., Ning, H.: A kernel machine-based secure data sensing and fusion scheme in wireless sensor networks for the cyber-physical systems. Future Gener. Comput. Syst. 61, 85–96 (2016)
Aminanto, M.E., Choi, R., Tanuwidjaja, H.C., Yoo, P.D., Kim, K.: Deep abstraction and weighted feature selection for Wi-Fi impersonation detection. IEEE Trans. Inf. Forensics Security 13(3), 621–636 (2018)
Elhoseny, M.: Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems. Circuits Systems Signal Process. 39, 611–630 (2020)
Goyal, A., Anandamurthy, S.B., Dash, P., Acharya, S., Bathla, D., Hicks, D., Bhan, A., Ranjan, P.: Automatic border surveillance using machine learning in remote video surveillance systems. In: Emerging Trends in Electrical, Communications, and Information Technologies: Proceedings of ICECIT-2018, pp. 751–760. Springer, Singapore (2020)
Karger, E., Jagals, M., Ahlemann, F.: Blockchain for smart mobility—literature review and future research agenda. Sustainability 13(23), 13268 (2021)
Pereira, J., Ricardo, L., Luís, M., Senna, C., Sargento, S.: Assessing the reliability of fog computing for smart mobility applications in VANETs. Futur. Gener. Comput. Syst. 94, 317–332 (2019)
Li, T., Xie, S., Zeng, Z., Dong, M., Liu, A.: ATPS: an AI based trust-aware and privacy preserving system for vehicle managements in sustainable VANETs. IEEE Trans. Intell. Transp. Syst. 23(10), 19837–19851 (2022)
Di Maio, A., Palattella, M.R., Soua, R., Lamorte, L., Vilajosana, X., Alonso-Zarate, J., Engel, T.: Enabling SDN in VANETs: what is the impact on security? Sensors 16(12), 2077 (2016)
Rahulamathavan, Y., Phan, R.C.W., Rajarajan, M., Misra, S., Kondoz, A.: Privacy-preserving blockchain based IoT ecosystem using attribute-based encryption. In: 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE (2017)
Brabant, M., Pereira, O., Méaux, P.: Homomorphic encryption for privacy-friendly augmented democracy. In: 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), pp. 18–23. IEEE (2022)
Gao, W., Yu, W., Liang, F., Hatcher, W.G., Lu, C.: Privacy-preserving auction for big data trading using homomorphic encryption. IEEE Trans. Netw. Sci. Eng. 7(2), 776–791 (2018)
Troisi, O., Fenza, G., Grimaldi, M., Loia, F.: Covid-19 sentiments in smart cities: the role of technology anxiety before and during the pandemic. Comput. Hum. Behav. 126, 106986 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hysa, X., Guazzo, G.M., Çekani, V., Rosati, P. (2024). Privacy and Smart Cities: A Bibliometric Analysis. In: Visvizi, A., Troisi, O., Corvello, V. (eds) Research and Innovation Forum 2023. RIIFORUM 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-44721-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-44721-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44720-4
Online ISBN: 978-3-031-44721-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)