Skip to main content

A Multi-Armed Bandits Learning-Based Approach to Service Caching in Edge Computing Environment

  • Conference paper
  • First Online:
Web Services – ICWS 2023 (ICWS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14209))

Included in the following conference series:

  • 184 Accesses

Abstract

Mobile edge computing (MEC) is a newly emerging concept that provides significant local computing power and reduces end-to-end latency. In MEC environments, caching frequently accessed services on edge servers effectively reduces latency and improves system responsiveness. An ongoing research topic in such a cachable MEC context is to design novel algorithms for yielding high-quality caching decision that guarantee high user-perceived quality-of-service (QoS) and high system responsiveness of delivery of cached content with the difference of caching capacities of edge servers and diversified content popularity appropriately addressed. In this article, we propose a multi-armed bandits learning-based method busing a Thompson sampling for generating caching decisions. We introduce a genetic multi-armed bandits algorithm (GMAB), which synthesizes the genetic algorithm (GA) and multi-armed bandits (MAB), for optimizing caching effectiveness with timing and space constraints. The experiment results show that GMAB outperforms traditional methods in terms of multiple aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, X., Chen, P., Xia, Y., Long, M., Peng, Q., Long, T.: Mroco: a novel approach to structured application scheduling with a hybrid vehicular cloud-edge environment, in. IEEE Int. Conf. Serv. Comput. (SCC) 2022, 84–92 (2022)

    Google Scholar 

  2. Ioannou, A., Weber, S.: A survey of caching policies and forwarding mechanisms in information-centric networking. IEEE Commun. Surv. Tutorials 18(4), 2847–2886 (2016)

    Article  Google Scholar 

  3. Ahlehagh, H., Dey, S.: Video caching in radio access network: impact on delay and capacity, in. IEEE Wirel. Commun. Network. Conf. (WCNC) 2012, 2276–2281 (2012)

    Google Scholar 

  4. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Online collaborative data caching in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(2), 281–294 (2021)

    Article  Google Scholar 

  5. Zhao, J., Sun, X., Li, Q., Ma, X.: Edge caching and computation management for real-time internet of vehicles: an online and distributed approach. IEEE Trans. Intell. Transp. Syst. 22(4), 2183–2197 (2021)

    Article  Google Scholar 

  6. Zeng, Y., et al.: Smart caching based on user behavior for mobile edge computing. Inf. Sci. 503, 444–468 (2019)

    Article  Google Scholar 

  7. Sengupta, A., Amuru, S., Tandon, R., Buehrer, R.M., Clancy, T.C., Learning distributed caching strategies in small cell networks. In: 11th International Symposium on Wireless Communications Systems (ISWCS). IEEE 2014, pp. 917–921 (2014)

    Google Scholar 

  8. Zhong, C., Gursoy, M.C., Velipasalar, S.: Deep reinforcement learning-based edge caching in wireless networks. IEEE Trans. Cogn. Commun. Network. 6(1), 48–61 (2020)

    Article  Google Scholar 

  9. Song, J., Sheng, M., Quek, T.Q., Xu, C., Wang, X.: Learning-based content caching and sharing for wireless networks. IEEE Trans. Commun. 65(10), 4309–4324 (2017)

    Google Scholar 

  10. Wu, P., Li, J., Shi, L., Ding, M., Cai, K., Yang, F.: Dynamic content update for wireless edge caching via deep reinforcement learning. IEEE Commun. Lett. 23(10), 1773–1777 (2019)

    Article  Google Scholar 

  11. Qiao, G., Leng, S., Maharjan, S., Zhang, Y., Ansari, N.: Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks. IEEE Internet Things J. 7(1), 247–257 (2020)

    Article  Google Scholar 

  12. Malazi, H.T., Clarke, S.: Distributed service placement and workload orchestration in a multi-access edge computing environment. IEEE Int. Conf. Serv. Comput. (SCC) 2021, 241–251 (2021)

    Google Scholar 

  13. Wu, B., Chen, T., Yang, K., Wang, X.: Edge-centric bandit learning for task-offloading allocations in multi-rat heterogeneous networks. IEEE Trans. Veh. Technol. 70(4), 3702–3714 (2021)

    Article  Google Scholar 

  14. Chen, L., Xu, J., Ren, S., Zhou, P.: Spatio-temporal edge service placement: a bandit learning approach. IEEE Trans. Wireless Commun. 17(12), 8388–8401 (2018)

    Article  Google Scholar 

  15. Xu, H., Chen, R., Xu, M., Jiang, M., Lu, X.: Device-to-device collaborative caching strategy based on incentive mechanism. IEEE/CIC Int. Conf. Commun. China (ICCC) 2021, 612–617 (2021)

    Google Scholar 

  16. Jiang, W., Feng, G., Qin, S.: Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Trans. Mob. Comput. 16(5), 1382–1393 (2017)

    Article  Google Scholar 

  17. Ren, D., Gui, X., Lu, W., An, J., Dai, H., Liang, X.: Ghcc: grouping-based and hierarchical collaborative caching for mobile edge computing. In: 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE, pp. 1–6 (2018)

    Google Scholar 

  18. Ren, D., et al.: Hierarchical resource distribution network based on mobile edge computing, in 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2017, pp. 57–64 (2017)

    Google Scholar 

  19. Lin, X., et al.: 5G new radio: unveiling the essentials of the next generation wireless access technology. IEEE Commun. Standards Mag. 3(3), 30–37 (2019). https://doi.org/10.1109/MCOMSTD.001.1800036

    Article  Google Scholar 

  20. Wu, L.Y., Zhang, X.S., Zhang, J.L.: Capacitated facility location problem with general setup cost. Comput. Oper. Res., vol. 33, pp. 1226–1241, 2006. https://doi.org/10.1016/j.cor.2004.09.012

  21. Yu, N., Xie, Q., Wang, Q., Du, H., Huang, H., Jia, X.: Collaborative service placement for mobile edge computing applications. In: IEEE Global Communications Conference, GLOBECOM 2018, Abu Dhabi, United Arab Emirates, December 9–13, 2018. IEEE, 2018, pp. 1–6. https://doi.org/10.1109/GLOCOM.2018.8647338

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiale Zhao or Yunni Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J. et al. (2023). A Multi-Armed Bandits Learning-Based Approach to Service Caching in Edge Computing Environment. In: Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2023. ICWS 2023. Lecture Notes in Computer Science, vol 14209. Springer, Cham. https://doi.org/10.1007/978-3-031-44836-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44836-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44835-5

  • Online ISBN: 978-3-031-44836-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics