Skip to main content

Deep Attention Assisted Multi-resolution Networks for the Segmentation of White Matter Hyperintensities in Postmortem MRI Scans

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2023)

Abstract

In the presence of cardiovascular disease and neurodegenerative disorders, the white matter of the brains of clinical study participants often present bright spots in T2-weighted Magnetic Resonance Imaging scans. The pathways contributing to the emergence of these white matter hyperintensities are still debated. By offering the possibility to directly compare MRI patterns with cellular and tissue alterations, research studies coupling postmortem imaging with histological studies are the most likely to provide a satisfactory answer to these open questions. Unfortunately, manually segmenting white matter hyperintensities in postmortem MRI scans before histology is time-consuming and labor-intensive. In this work, we propose to tackle this issue with new, fully automatic segmentation tools relying on the most recent Deep Learning architectures. More specifically, we compare the ability to predict white matter hyperintensities from a registered pair of T1 and T2-weighted postmortem MRI scans of five Unet architectures: the original Unet, DoubleUNet, Attention UNet, Multiresolution UNet, and a new architecture specifically designed for the task. A detailed comparison between these five Unets and an ablation study, carried out on the sagittal slices of 13 pairs of high-resolution T1 and T2 weighted MRI scans manually annotated by neuroradiologists, demonstrate the superiority of our new approach and provide an estimation of the performance gains offered by the modules introduced in the new architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anbeek, P., Vincken, K.L., Van Osch, M.J.P., Bisschops, R.H.C., Van Det Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21(3), 1037–1044 (2004)

    Google Scholar 

  2. Anonymous: in revision

    Google Scholar 

  3. Avants, B., Tustison, N., Wu, J., Cook, P., Gee, J.: An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011)

    Article  Google Scholar 

  4. Benson, R.R., et al.: Older people with impaired mobility have specific loci of periventricular abnormality on MRI. Neurology 58(1), 48–55 (2002)

    Article  Google Scholar 

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  6. Fiford, C.M., et al.: Automated white matter hyperintensity segmentation using bayesian model selection: assessment and correlations with cognitive change. Neuroinformatics 18, 429–449 (2020)

    Google Scholar 

  7. Gibson, E., Gao, F., Black, S.E., Lobaugh, N.J.: Automatic segmentation of white matter hyperintensities in the elderly using flair images at 3t. J. Magn. Reson. Imaging 31(6), 1311–1322 (2010)

    Google Scholar 

  8. Giese, A.K., et al.: White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype. Neurology 95(1), e79–e88 (2020)

    Google Scholar 

  9. Grinberg, L., et al.: Improved detection of incipient vascular changes by a biotechnological platform combining post mortem MRI in situ with neuropathology. J. Neurol. Sci. 283(1–2), 2–8 (2009)

    Article  Google Scholar 

  10. Habes, M., et al.: White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain 139(4), 1164–1179 (2016)

    Google Scholar 

  11. Habes, M., et al.: White matter lesions: spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy. Neurology 91(10), e964–e975 (2018)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  13. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  14. Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M., Smith, S.: FSL. NeuroImage 62(2), 782–790 (2012)

    Article  Google Scholar 

  15. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: Doubleu-net: a deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 558–564. IEEE (2020)

    Google Scholar 

  16. Jonkman, L.E., Kenkhuis, B., Geurts, J.J., van de Berg, W.D.: Post-mortem MRI and histopathology in neurologic disease: a translational approach. Neurosci. Bull. 35, 229–243 (2019)

    Article  Google Scholar 

  17. Lee, S., et al.: White matter hyperintensities are a core feature of Alzheimer’s disease: evidence from the dominantly inherited Alzheimer network. Ann. Neurol. 79(6), 929–939 (2016)

    Google Scholar 

  18. Maldjian, J.A., et al.: Automated white matter total lesion volume segmentation in diabetes. Am. J. Neuroradiol. 34(12), 2265–2270 (2013)

    Google Scholar 

  19. Manjón, J., Coupé, P., Martí-Bonmatí, L., Collins, D., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Resonan. Imaging: JMRI 31(1), 192–203 (2010)

    Article  Google Scholar 

  20. Murray, M.E., et al.: A quantitative postmortem MRI design sensitive to white matter hyperintensity differences and their relationship with underlying pathology. J. Neuropathol. Exp. Neurol. 71(12), 1113–1122 (2012)

    Google Scholar 

  21. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  22. Rahil, M., Anoop, B., Girish, G., Kothari, A.R., Koolagudi, S.G., Rajan, J.: A deep ensemble learning-based CNN architecture for multiclass retinal fluid segmentation in oct images. IEEE Access (2023)

    Google Scholar 

  23. Rashid, T., et al.: DeepMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI. Sci. Rep. 11(1), 14124 (2021)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Roseborough, A.D., et al.: Post-mortem 7 tesla MRI detection of white matter hyperintensities: a multidisciplinary voxel-wise comparison of imaging and histological correlates. NeuroImage: Clin. 27, 102340 (2020)

    Google Scholar 

  26. Samaille, T., et al.: Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation. PLoS ONE 7(11), e48953 (2012)

    Article  Google Scholar 

  27. Simões, R., et al.: Automatic segmentation of cerebral white matter hyperintensities using only 3d flair images. Magn. Reson. Imaging 31(7), 1182–1189 (2013)

    Article  Google Scholar 

  28. Smith, C.D., Snowdon, D.A., Wang, H., Markesbery, W.R.: White matter volumes and periventricular white matter hyperintensities in aging and dementia. Neurology 54(4), 838–842 (2000)

    Article  Google Scholar 

  29. Tustison, N.J., et al.: N4ITK: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  30. Verhaaren, B.F., et al.: Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circulat. Cardiovasc. Genet. 8(2), 398–409 (2015)

    Google Scholar 

  31. Viteri, J.A., Loayza, F.R., Pelaez, E., Layedra, F.: Automatic brain white matter hypertinsities segmentation using deep learning techniques. In: HEALTHINF, pp. 244–252 (2021)

    Google Scholar 

  32. Zhuang, F.J., Chen, Y., He, W.B., Cai, Z.Y.: Prevalence of white matter hyperintensities increases with age. Neural Regen. Res. 13(12), 2141 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Benet Nirmala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benet Nirmala, A. et al. (2023). Deep Attention Assisted Multi-resolution Networks for the Segmentation of White Matter Hyperintensities in Postmortem MRI Scans. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2023. Lecture Notes in Computer Science, vol 14312. Springer, Cham. https://doi.org/10.1007/978-3-031-44858-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44858-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44857-7

  • Online ISBN: 978-3-031-44858-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics