Skip to main content

VesselShot: Few-shot Learning for Cerebral Blood Vessel Segmentation

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2023)

Abstract

Angiography is widely used to detect, diagnose, and treat cerebrovascular diseases. While numerous techniques have been proposed to segment the vascular network from different imaging modalities, deep learning (DL) has emerged as a promising approach. However, existing DL methods often depend on proprietary datasets and extensive manual annotation. Moreover, the availability of pre-trained networks specifically for medical domains and 3D volumes is limited. To overcome these challenges, we propose a few-shot learning approach called “VesselShot” for cerebrovascular segmentation. VesselShot leverages knowledge from a few annotated support images and mitigates the scarcity of labeled data and the need for extensive annotation in cerebral blood vessel segmentation. We evaluated the performance of VesselShot using the publicly available TubeTK dataset for the segmentation task, achieving a mean Dice coefficient (DC) of \(0.62\pm 0.03\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://public.kitware.com/Wiki/TubeTK/Data.

References

  1. Goni, M.R., Ruhaiyem, N.I.R., Mustapha, M., Achuthan, A., Nassir, C.M.N.C.M.: Brain vessel segmentation using deep learning-a review. In: IEEE Access (2022)

    Google Scholar 

  2. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: squeeze & excite’guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020)

    Article  Google Scholar 

  3. Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3918–3928 ( 2021)

    Google Scholar 

  4. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with superpixels: training few-shot medical image segmentation without annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 762–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_45

    Chapter  Google Scholar 

  5. Mondal, A.K., Dolz, J., Desrosiers, C.: Few-shot 3d multi-modal medical image segmentation using generative adversarial learning. arXiv preprint arXiv:1810.12241 (2018)

  6. Guo, S., Xu, L., Feng, C., Xiong, H., Gao, Z., Zhang, H.: Multi-level semantic adaptation for few-shot segmentation on cardiac image sequences. Med. Image Anal. 73, 102170 (2021)

    Article  Google Scholar 

  7. Xu, J., et al.: A few-shot learning-based retinal vessel segmentation method for assisting in the central serous chorioretinopathy laser surgery. Front. Med. 9, 821565 (2022)

    Article  Google Scholar 

  8. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  9. Wang, Y., et al.: VC-Net: deep volume-composition networks for segmentation and visualization of highly sparse and noisy image data. IEEE Trans. Visual Comput. Graph. 27(2), 1301–1311 (2020)

    Article  Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Su, J., et al.: DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function. Knowl. Based Syst. 232, 107471 (2021)

    Article  Google Scholar 

  12. Livne, M., et al.: A u-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front. Neurosci. 13, 97 (2019)

    Article  Google Scholar 

  13. Hellum, O., Mu, Y., Kersten-Oertel, M., Xiao, Y.: A novel prototype for virtual-reality-based deep brain stimulation trajectory planning using voodoo doll annotation and eye-tracking. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 10(4), 418–424 (2022)

    Article  Google Scholar 

  14. Bériault, S., et al.: Towards computer-assisted deep brain stimulation targeting with multiple active contacts. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 487–494. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_60

    Chapter  Google Scholar 

  15. Li, M., Li, S., Han, Y., Zhang, T.: GVC-Net: global vascular context network for cerebrovascular segmentation using sparse labels. IRBM 43(6), 561–572 (2022)

    Article  Google Scholar 

  16. Holroyd, N.A., Li, Z., Walsh, C., Brown, E.E., Shipley, R.J., Walker-Samuel, S.: tUbe net: a generalizable deep learning tool for 3d vessel segmentation, pp. 2023–07. bioRxiv (2023)

    Google Scholar 

Download references

Acknowledgements

This study was funded by an FRQNT Team Grant (2022-PR-296459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumu Aktar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aktar, M., Rivaz, H., Kersten-Oertel, M., Xiao, Y. (2023). VesselShot: Few-shot Learning for Cerebral Blood Vessel Segmentation. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2023. Lecture Notes in Computer Science, vol 14312. Springer, Cham. https://doi.org/10.1007/978-3-031-44858-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44858-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44857-7

  • Online ISBN: 978-3-031-44858-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics