Skip to main content

Joint Estimation of Neural Events and Hemodynamic Response Functions from Task fMRI via Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2023)

Abstract

Joint decomposition of functional magnetic resonance imaging (fMRI) time series into time courses of neural activity events and hemodynamic response functions (HRF) can enable new insights into functional connectivity, task activation, and neurovascular coupling in health and disease. Current methods for this problem handle time series of either temporally isolated events or extended blocks of continuous events but not both; and they constrain the HRF to one specific functional form. We propose to use an autoencoder and a convolutional neural network (CNN) to overcome these challenges. The autoencoder uses convolutional neural networks to reconstruct the fMRI time series while estimating the neural event time series. The CNN estimates the HRF as the convolutional filter that, when applied to a binarized version of the neural event time series, best reconstructs the fMRI time series. When applied to synthetic data and data simulated by the STANCE fMRI simulator, the method estimates ground-truth neural events and HRFs more robustly than competing methods. When applied to real-world fMRI data, the method identifies temporally isolated, continuous, or mixed neural events that correspond to experimental conditions more closely than competing methods. The flexibility and computational power of machine learning techniques enable the accurate capture of diverse HRFs and neural event time series from fMRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buxton, R.B.: Dynamic models of BOLD contrast. Neuroimage 62(2), 953–961 (2012)

    Article  Google Scholar 

  2. Buxton, R.B., et al.: Modeling the hemodynamic response to brain activation. Neuroimage 23, S220–S233 (2004)

    Article  Google Scholar 

  3. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39(6), 855–864 (1998)

    Article  Google Scholar 

  4. Friston, K.J., Jezzard, P., Turner, R.: Analysis of functional MRI time-series. Hum. Brain Mapp. 1(2), 153–171 (1994)

    Article  Google Scholar 

  5. Friston, K.J., et al.: Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12(4), 466–477 (2000)

    Article  Google Scholar 

  6. Handwerker, D.A., Ollinger, J.M., D’Esposito, M.: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21(4), 1639–1651 (2004)

    Article  Google Scholar 

  7. Huettel, S.A., Singerman, J.D., McCarthy, G.: The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13(1), 161–175 (2001)

    Article  Google Scholar 

  8. Rangaprakash, D., et al.: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity. Magn. Reson. Med. 80(4), 1697–1713 (2018)

    Article  Google Scholar 

  9. West, K.L., et al.: BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 188, 198–207 (2019)

    Article  Google Scholar 

  10. Buckner, R.L., et al.: Functional brain imaging of young, nondemented, and demented older adults. J. Cogn. Neurosci. 12(Supplement 2), 24–34 (2000)

    Article  Google Scholar 

  11. Cherkaoui, H., et al.: Multivariate semi-blind deconvolution of fMRI time series. Neuroimage 241, 118418 (2021)

    Article  Google Scholar 

  12. Rangaprakash, D., et al.: Hemodynamic variability in soldiers with trauma: implications for functional MRI connectivity studies. NeuroImage: Clin. 16, 409–417 (2017)

    Google Scholar 

  13. Rangaprakash, D., et al.: FMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response. Brain Imaging Behav. 15(3), 1622–1640 (2021)

    Article  Google Scholar 

  14. Amaro Jr, E., Barker, G.J.: Study design in fMRI: basic principles. Brain Cogn. 60(3), 220–232 (2006)

    Google Scholar 

  15. Buckner, R.L.: Event-related fMRI and the hemodynamic response. Hum. Brain Mapp. 6(5–6), 373–377 (1998)

    Article  Google Scholar 

  16. Fan, J., et al.: The activation of attentional networks. Neuroimage 26(2), 471–479 (2005)

    Article  Google Scholar 

  17. Sheu, L.K., Jennings, J.R., Gianaros, P.J.: Test–retest reliability of an fMRI paradigm for studies of cardiovascular reactivity. Psychophysiology 49(7), 873–884 (2012)

    Article  Google Scholar 

  18. Chuang, K.-C., et al.: Nonlinear conditional time-varying granger causality of task fMRI via deep stacking networks and adaptive convolutional kernels. In: Wang, L., Qi Dou, P., Fletcher, T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I, pp. 271–281. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_26

  19. Chuang, K.-C., et al.: Deep stacking networks for conditional nonlinear granger causal modeling of fMRI data. In: Abdulkadir, A.., et al. (eds.) Machine Learning in Clinical Neuroimaging: 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings, pp. 113–124. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_12

  20. Friston, K., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)

    Article  Google Scholar 

  21. Friston, K., Moran, R., Seth, A.K.: Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23(2), 172–178 (2013)

    Article  Google Scholar 

  22. Chuang, K.-C., et al.: Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: the Bogalusa Heart Study. Front. Aging Neurosci. 15, 1110434 (2023)

    Article  Google Scholar 

  23. Friston, K.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wen, X., Rangarajan, G., Ding, M.: Is Granger causality a viable technique for analyzing fMRI data? PLoS ONE 8(7), e67428 (2013)

    Article  Google Scholar 

  25. Wu, G.-R., et al.: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17(3), 365–374 (2013)

    Article  MathSciNet  Google Scholar 

  26. Seth, A.K., Chorley, P., Barnett, L.C.: Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65, 540–555 (2013)

    Article  Google Scholar 

  27. Aggarwal, P., Gupta, A., Garg, A.: Joint estimation of activity signal and HRF in fMRI using fused LASSO. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE (2015)

    Google Scholar 

  28. Cherkaoui, H., et al.: Sparsity-based blind deconvolution of neural activation signal in fMRI. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2019)

    Google Scholar 

  29. Bühler, M., et al:, Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs. Behav. Brain Funct. 4(1), 1–12 (2008)

    Google Scholar 

  30. Donaldson, D.I.: Parsing brain activity with fMRI and mixed designs: what kind of a state is neuroimaging in? Trends Neurosci. 27(8), 442–444 (2004)

    Article  Google Scholar 

  31. Asemani, D., Morsheddost, H., Shalchy, M.A.: Effects of ageing and Alzheimer disease on haemodynamic response function: a challenge for event-related fMRI. Healthcare Technol. Let. 4(3), 109–114 (2017)

    Article  Google Scholar 

  32. Glover, G.H.: Deconvolution of impulse response in event-related BOLD fMRI1. Neuroimage 9(4), 416–429 (1999)

    Article  Google Scholar 

  33. Arthur, D., Vassilvitskii, S.: K-means++ the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2007)

    Google Scholar 

  34. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016)

    Google Scholar 

  35. Chollet, F.: keras (2015)

    Google Scholar 

  36. Hill, J.E., et al.: A task-related and resting state realistic fMRI simulator for fMRI data validation. In: Medical Imaging 2017: Image Processing. International Society for Optics and Photonics (2017)

    Google Scholar 

  37. Penny, W.D., et al.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier (20110

    Google Scholar 

  38. Carmichael, O., et al.: High-normal adolescent fasting plasma glucose is associated with poorer midlife brain health: Bogalusa Heart Study. J. Clin. Endocrinol. Metab. 104(10), 4492–4500 (2019)

    Article  Google Scholar 

  39. Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Medi. Offic. J. Int. Soc. Magn. Reson. Med. 44(1), 162–167 (2000)

    Article  Google Scholar 

  40. Harvey, J.-L., et al.: A short, robust brain activation control task optimised for pharmacological fMRI studies. PeerJ 6, e5540 (2018)

    Article  Google Scholar 

  41. Kirby, K.M., et al.: Neuroimaging, behavioral, and gait correlates of fall profile in older adults. Front. Aging Neurosci. 13, 630049 (2021)

    Article  Google Scholar 

  42. Martindale, J., et al.: The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab. 23(5), 546–555 (2003)

    Article  Google Scholar 

  43. Yeşilyurt, B., Uğurbil, K., Uludağ, K.: Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn. Reson. Imaging 26(7), 853–862 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by NIH grants R01AG041200 and R01AG062309 as well as the Pennington Biomedical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Cheng Chuang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 497 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuang, KC., Ramakrishnapillai, S., Kirby, K., Van Gemmert, A.W.A., Bazzano, L., Carmichael, O.T. (2023). Joint Estimation of Neural Events and Hemodynamic Response Functions from Task fMRI via Convolutional Neural Networks. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2023. Lecture Notes in Computer Science, vol 14312. Springer, Cham. https://doi.org/10.1007/978-3-031-44858-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44858-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44857-7

  • Online ISBN: 978-3-031-44858-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics