Skip to main content

Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Abstract

Deep learning algorithms for image segmentation typically require large data sets with high-quality annotations to be trained with. For many domains, the annotation cost for obtaining such sets may prove to be prohibitively expensive. Our work aims to reduce the time necessary to create high-quality annotated images by using a relatively small well-annotated data set for training a convolutional neural network to upgrade lower-quality annotations, produced at lower annotation costs. We apply our method to the task of cell segmentation and investigate the performance of our solution when upgrading annotation quality for labels affected by three types of annotation errors: omission, inclusion, and bias. We observe that our method is able to upgrade annotations affected by high error levels from 0.3 to 0.9 Dice similarity with the ground-truth annotations. Moreover, we show that a relatively small well-annotated set enlarged with samples with upgraded annotations can be used to train better-performing segmentation networks compared to training only on the well-annotated set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araújo, R.J., Cardoso, J.S., Oliveira, H.P.: A deep learning design for improving topology coherence in blood vessel segmentation. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I, pp. 93–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_11

    Chapter  Google Scholar 

  2. Can, Y.B., Chaitanya, K., Mustafa, B., Koch, L.M., Konukoglu, E., Baumgartner, C.F.: Learning to segment medical images with scribble-supervision alone. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 236–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_27

    Chapter  Google Scholar 

  3. Casser, V., Kang, K., Pfister, H., Haehn, D.: Fast mitochondria detection for connectomics. In: Arbel, T., Ayed, I.B., de Bruijne, M., Descoteaux, M., Lombaert, H., Pal, C. (eds.) MIDL 2020. Proceedings of Machine Learning Research, vol. 121, pp. 111–120. PMLR (2020)

    Google Scholar 

  4. Chen, S., Juarez, A.G., Su, J., van Tulder, G., Wolff, L., van Walsum, T., de Bruijne, M.: Label refinement network from synthetic error augmentation for medical image segmentation. CoRR abs/2209.06353 (2022)

    Google Scholar 

  5. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  6. Dai, W., Dong, N., Wang, Z., Liang, X., Zhang, H., Xing, E.P.: SCAN: structure correcting adversarial network for organ segmentation in chest x-rays. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_30

    Chapter  Google Scholar 

  7. Diem, K., Magaret, A.S., Klock, A., Jin, L., Zhu, J., Corey, L.: Image analysis for accurately counting cd4+ and cd8+ t cells in human tissue. J. Virol. Methods 222, 117–21 (2015)

    Article  Google Scholar 

  8. Feng, R., et al.: Interactive few-shot learning: limited supervision, better medical image segmentation. IEEE Trans. Med. Imaging 40(10), 2575–2588 (2021)

    Article  Google Scholar 

  9. Feyjie, A.R., Azad, R., Pedersoli, M., Kauffman, C., Ayed, I.B., Dolz, J.: Semi-supervised few-shot learning for medical image segmentation. arXiv preprint arXiv:2003.08462 (2020)

  10. Greenwald, N.F., et al.: Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40(4), 555–565 (2022)

    Article  Google Scholar 

  11. Kamath, U., Liu, J., Whitaker, J.: Deep Learning for NLP and Speech Recognition. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14596-5

    Book  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR 2015 (2015)

    Google Scholar 

  13. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Medical Imaging 31(2), 474–486 (2012)

    Article  Google Scholar 

  14. Matuszewski, D.J., Sintorn, I.M.: Minimal annotation training for segmentation of microscopy images. In: ISBI 2018, pp. 387–390. IEEE (2018)

    Google Scholar 

  15. Min, S., Chen, X., Zha, Z.J., Wu, F., Zhang, Y.: A two-stream mutual attention network for semi-supervised biomedical segmentation with noisy labels. In: AAAI. vol. 33, pp. 4578–4585 (2019)

    Google Scholar 

  16. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022)

    Google Scholar 

  17. Nie, D., Gao, Y., Wang, L., Shen, D.: ASDNet: attention based semi-supervised deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 370–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_43

    Chapter  Google Scholar 

  18. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS 2019, pp. 8024–8035 (2019)

    Google Scholar 

  19. Peng, L., et al.: Semi-supervised learning for semantic segmentation of emphysema with partial annotations. IEEE J. Biomed. Health Inform. 24(8), 2327–2336 (2020)

    Article  Google Scholar 

  20. Rajchl, M., et al.: Deepcut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36(2), 674–683 (2017)

    Article  Google Scholar 

  21. Rey, D., Neuhäuser, M.: Wilcoxon-signed-rank test. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1658–1659. Springer (2011)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry Part A 75A (2009)

    Google Scholar 

  24. Voulodimos, A., Doulamis, N., Doulamis, A.D., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 7068349:1–7068349:13 (2018)

    Google Scholar 

  25. Vădineanu, S., Pelt, D.M., Dzyubachyk, O., Batenburg, K.J.: An analysis of the impact of annotation errors on the accuracy of deep learning for cell segmentation. In: Proceedings of The 5th International Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 172, pp. 1251–1267. PMLR (06–08 Jul 2022)

    Google Scholar 

  26. Yang, Y., Wang, Z., Liu, J., Cheng, K.T., Yang, X.: Label refinement with an iterative generative adversarial network for boosting retinal vessel segmentation. arXiv preprint arXiv:1912.02589 (2019)

  27. Zhang, L., et al.: Disentangling human error from ground truth in segmentation of medical images. Adv. Neural. Inf. Process. Syst. 33, 15750–15762 (2020)

    Google Scholar 

  28. Zhang, M., et al.: Characterizing label errors: confident learning for noisy-labeled image segmentation. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I, pp. 721–730. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_70

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was supported by the SAILS program of Leiden University. DMP is supported by The Netherlands Organisation for Scientific Research (NWO), project number 016.Veni.192.235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şerban Vădineanu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 360 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vădineanu, Ş., Pelt, D.M., Dzyubachyk, O., Batenburg, K.J. (2023). Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics