Skip to main content

Exigent Examiner and Mean Teacher: An Advanced 3D CNN-Based Semi-Supervised Brain Tumor Segmentation Framework

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14307))

Included in the following conference series:

  • 288 Accesses

Abstract

With the rise of deep learning applications to medical imaging, there has been a growing appetite for large and well-annotated datasets, yet annotation is time-consuming and hard to come by. In this work, we train a 3D semantic segmentation model in an advanced semi-supervised learning fashion. The proposed SSL framework consists of three models: a Student model that learns from annotated data and a large amount of raw data, a Teacher model with the same architecture as the student, updated by self-ensembling and which supervises the student through pseudo-labels, and an Examiner model that assesses the quality of the student’s inferences. All three models are built with 3D convolutional operations. The overall framework mimics a collaboration between a consistency training Student \(\leftrightarrow \) Teacher module and an adversarial training Examiner \(\leftrightarrow \) Student module. The proposed method is validated with various evaluation metrics on a public benchmarking 3D MRI brain tumor segmentation dataset. The experimental results of the proposed method outperform pre-existing semi-supervised methods. The source code, baseline methods, and dataset are available at https://github.com/ziyangwang007/CV-SSL-MIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI 37(11), 2514–2525 (2018)

    Google Scholar 

  2. Chen, L.-C., et al.: Naive-student: leveraging semi-supervised learning in video sequences for urban scene segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 695–714. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_40

    Chapter  Google Scholar 

  3. Chen, X., et al.: Semi-supervised semantic segmentation with cross pseudo supervision. In: CVPR (2021)

    Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: IPMI (2019)

    Google Scholar 

  6. David, B., et al.: Mixmatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  7. Dong-DongChen, et al.: Tri-net for semi-supervised deep learning. In: IJCAI (2018)

    Google Scholar 

  8. Fang, K., Li, W.-J.: DMNet: difference minimization network for semi-supervised segmentation in medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 532–541. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_52

    Chapter  Google Scholar 

  9. French, G., et al.: Semi-supervised semantic segmentation needs strong, varied perturbations. In: BMVC (2019)

    Google Scholar 

  10. Hung, W.C., et al.: Adversarial learning for semi-supervised semantic segmentation. In: BMVC (2018)

    Google Scholar 

  11. Ke, Z., et al.: Dual student: breaking the limits of the teacher in semi-supervised learning. In: CVPR (2019)

    Google Scholar 

  12. Kihyuk, S., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)

    Google Scholar 

  13. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE TMI 34(10), 1993–2024 (2014)

    Google Scholar 

  14. Mittal, S., Tatarchenko, M., Brox, T.: Semi-supervised semantic segmentation with high-and low-level consistency. IEEE TPAMI 43(4), 1369–1379 (2019)

    Article  Google Scholar 

  15. Nasim, S., et al.: Semi supervised semantic segmentation using generative adversarial network. In: ICCV (2017)

    Google Scholar 

  16. Ouali, Y., et al.: Semi-supervised semantic segmentation with cross-consistency training. In: CVPR (2020)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Samuli, L., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2016)

    Google Scholar 

  19. Shanis, Z., Gerber, S., Gao, M., Enquobahrie, A.: Intramodality domain adaptation using self ensembling and adversarial training. In: Wang, Q., et al. (eds.) DART/MIL3ID-2019. LNCS, vol. 11795, pp. 28–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_4

    Chapter  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  21. Takeru, M., et al.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE TPAMI 41(8), 1979–1993 (2018)

    Google Scholar 

  22. Tarvainen, A., et al.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)

    Google Scholar 

  23. Verma, V., et al.: Interpolation consistency training for semi-supervised learning. In: IJCAI (2019)

    Google Scholar 

  24. Vu, T.H., et al.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR (2019)

    Google Scholar 

  25. Wang, K., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. MedIA (2022)

    Google Scholar 

  26. Wang, Z., et al.: RAR-U-net: a residual encoder to attention decoder by residual connections framework for spine segmentation under noisy labels. In: ICIP. IEEE (2021)

    Google Scholar 

  27. Wang, Z., et al.: Triple-view feature learning for medical image segmentation. In: MICCAI-W (2022)

    Google Scholar 

  28. Wang, Z., et al.: Uncertainty-aware transformer for MRI cardiac segmentation via mean teachers. In: MIUA (2022)

    Google Scholar 

  29. Wang, Z., Dong, N., Voiculescu, I.: Computationally-efficient vision transformer for medical image semantic segmentation via dual pseudo-label supervision. In: ICIP. IEEE (2022)

    Google Scholar 

  30. Wang, Z., Voiculescu, I.: Dealing with unreliable annotations: a noise-robust network for semantic segmentation through a transformer-improved encoder and convolution decoder. Appl. Sci. 13(13), 7966 (2023)

    Article  Google Scholar 

  31. Yeghiazaryan, V., et al.: Family of boundary overlap metrics for the evaluation of medical image segmentation. SPIE JMI 5(1), 015006–015006 (2018)

    Google Scholar 

  32. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  33. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Voiculescu, I. (2023). Exigent Examiner and Mean Teacher: An Advanced 3D CNN-Based Semi-Supervised Brain Tumor Segmentation Framework. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics