Abstract
Accurate analysis and modeling of renal functions require a precise segmentation of the renal blood vessels. Micro-CT scans provide image data at higher resolutions, making deeper vessels near the renal cortex visible. Although deep-learning-based methods have shown state-of-the-art performance in automatic blood vessel segmentations, they require a large amount of labeled training data. However, voxel-wise labeling in micro-CT scans is extremely time-consuming, given the huge volume sizes. To mitigate the problem, we simulate synthetic renal vascular trees physiologically while generating corresponding scans of the simulated trees by training a generative model on unlabeled scans. This enables the generative model to learn the mapping implicitly without the need for explicit functions to emulate the image acquisition process. We further propose an additional segmentation branch over the generative model trained on the generated scans. We demonstrate that the model can directly segment blood vessels on real scans and validate our method on both 3D micro-CT scans of rat kidneys and a proof-of-concept experiment on 2D retinal images. Code and 3D results are available at (https://github.com/diku-dk/RenalVesselSeg).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersen, S.B., et al.: Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci. Rep. 11(1), 1–13 (2021)
Bui, T.D., Wang, L., Lin, W., Li, G., Shen, D.: 6-month infant brain MRI segmentation guided by 24-month data using cycle-consistent adversarial networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 359–362. IEEE (2020)
Chen, H., et al.: Real-time cerebral vessel segmentation in laser speckle contrast image based on unsupervised domain adaptation. Front. Neurosci. 1523 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Cui, H., Liu, X., Huang, N.: Pulmonary vessel segmentation based on orthogonal fused U-Net++ of chest CT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 293–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_33
Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)
Georg, M., Preusser, T., Hahn, H.K.: Global constructive optimization of vascular systems (2010). https://openscholarship.wustl.edu/cse_research/36
Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., Mcleod, K.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Med. Imaging 40(10), 2783–2794 (2021)
He, Y., et al.: Dense biased networks with deep priori anatomy and hard region adaptation: semi-supervised learning for fine renal artery segmentation. Med. Image Anal. 63, 101722 (2020)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Jia, D., Zhuang, X.: Learning-based algorithms for vessel tracking: a review. Comput. Med. Imaging Graph. 89, 101840 (2021)
Keshwani, D., Kitamura, Y., Ihara, S., Iizuka, S., Simo-Serra, E.: TopNet: topology preserving metric learning for vessel tree reconstruction and labelling. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_2
Lindner, L., Narnhofer, D., Weber, M., Gsaxner, C., Kolodziej, M., Egger, J.: Using synthetic training data for deep learning-based GBM segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6724–6729. IEEE (2019)
Luo, T., Gast, T.J., Vermeer, T.J., Burns, S.A.: Retinal vascular branching in healthy and diabetic subjects. Investig. Ophthalmol. Vis. Sci. 58(5), 2685–2694 (2017)
Malimban, J., et al.: Deep learning-based segmentation of the thorax in mouse micro-CT scans. Sci. Rep. 12(1), 1822 (2022)
Marsh, D.J., Postnov, D.D., Sosnovtseva, O.V., Holstein-Rathlou, N.H.: The nephron-arterial network and its interactions. Am. J. Physiol.-Renal Physiol. 316(5), F769–F784 (2019)
Menten, M.J., Paetzold, J.C., Dima, A., Menze, B.H., Knier, B., Rueckert, D.: Physiology-based simulation of the retinal vasculature enables annotation-free segmentation of oct angiographs. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 330–340. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_32
Murray, C.D.: The physiological principle of minimum work: I. the vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. 12(3), 207–214 (1926)
Ohnishi, T., et al.: Three-dimensional vessel segmentation in whole-tissue and whole-block imaging using a deep neural network: proof-of-concept study. Am. J. Pathol. 191(3), 463–474 (2021)
Ritman, E.L.: Current status of developments and applications of micro-CT. Annu. Rev. Biomed. Eng. 13, 531–552 (2011)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schreiner, W., Karch, R., Neumann, F., Neumann, M.: Constrained constructive optimization of arterial tree models. Scaling Biol. 145, 65 (2000)
Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)
Todorov, M.I., et al.: Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17(4), 442–449 (2020)
Xu, P., et al.: A hybrid approach to full-scale reconstruction of renal arterial network. Sci. Rep. 13(1), 7569 (2023)
Zhang, J., Zhang, Y., Xu, X.: Pyramid u-net for retinal vessel segmentation. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1125–1129. IEEE (2021)
Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9242–9251 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, P., Lee, B., Sosnovtseva, O., Sørensen, C.M., Erleben, K., Darkner, S. (2023). Extremely Weakly-Supervised Blood Vessel Segmentation with Physiologically Based Synthesis and Domain Adaptation. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-44917-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47196-4
Online ISBN: 978-3-031-44917-8
eBook Packages: Computer ScienceComputer Science (R0)