Skip to main content

Extremely Weakly-Supervised Blood Vessel Segmentation with Physiologically Based Synthesis and Domain Adaptation

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14307))

Included in the following conference series:

Abstract

Accurate analysis and modeling of renal functions require a precise segmentation of the renal blood vessels. Micro-CT scans provide image data at higher resolutions, making deeper vessels near the renal cortex visible. Although deep-learning-based methods have shown state-of-the-art performance in automatic blood vessel segmentations, they require a large amount of labeled training data. However, voxel-wise labeling in micro-CT scans is extremely time-consuming, given the huge volume sizes. To mitigate the problem, we simulate synthetic renal vascular trees physiologically while generating corresponding scans of the simulated trees by training a generative model on unlabeled scans. This enables the generative model to learn the mapping implicitly without the need for explicit functions to emulate the image acquisition process. We further propose an additional segmentation branch over the generative model trained on the generated scans. We demonstrate that the model can directly segment blood vessels on real scans and validate our method on both 3D micro-CT scans of rat kidneys and a proof-of-concept experiment on 2D retinal images. Code and 3D results are available at (https://github.com/diku-dk/RenalVesselSeg).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, S.B., et al.: Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci. Rep. 11(1), 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bui, T.D., Wang, L., Lin, W., Li, G., Shen, D.: 6-month infant brain MRI segmentation guided by 24-month data using cycle-consistent adversarial networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 359–362. IEEE (2020)

    Google Scholar 

  3. Chen, H., et al.: Real-time cerebral vessel segmentation in laser speckle contrast image based on unsupervised domain adaptation. Front. Neurosci. 1523 (2021)

    Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Cui, H., Liu, X., Huang, N.: Pulmonary vessel segmentation based on orthogonal fused U-Net++ of chest CT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 293–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_33

    Chapter  Google Scholar 

  6. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  7. Georg, M., Preusser, T., Hahn, H.K.: Global constructive optimization of vascular systems (2010). https://openscholarship.wustl.edu/cse_research/36

  8. Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., Mcleod, K.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Med. Imaging 40(10), 2783–2794 (2021)

    Article  Google Scholar 

  9. He, Y., et al.: Dense biased networks with deep priori anatomy and hard region adaptation: semi-supervised learning for fine renal artery segmentation. Med. Image Anal. 63, 101722 (2020)

    Article  Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Jia, D., Zhuang, X.: Learning-based algorithms for vessel tracking: a review. Comput. Med. Imaging Graph. 89, 101840 (2021)

    Article  Google Scholar 

  12. Keshwani, D., Kitamura, Y., Ihara, S., Iizuka, S., Simo-Serra, E.: TopNet: topology preserving metric learning for vessel tree reconstruction and labelling. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_2

    Chapter  Google Scholar 

  13. Lindner, L., Narnhofer, D., Weber, M., Gsaxner, C., Kolodziej, M., Egger, J.: Using synthetic training data for deep learning-based GBM segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6724–6729. IEEE (2019)

    Google Scholar 

  14. Luo, T., Gast, T.J., Vermeer, T.J., Burns, S.A.: Retinal vascular branching in healthy and diabetic subjects. Investig. Ophthalmol. Vis. Sci. 58(5), 2685–2694 (2017)

    Article  Google Scholar 

  15. Malimban, J., et al.: Deep learning-based segmentation of the thorax in mouse micro-CT scans. Sci. Rep. 12(1), 1822 (2022)

    Article  Google Scholar 

  16. Marsh, D.J., Postnov, D.D., Sosnovtseva, O.V., Holstein-Rathlou, N.H.: The nephron-arterial network and its interactions. Am. J. Physiol.-Renal Physiol. 316(5), F769–F784 (2019)

    Article  Google Scholar 

  17. Menten, M.J., Paetzold, J.C., Dima, A., Menze, B.H., Knier, B., Rueckert, D.: Physiology-based simulation of the retinal vasculature enables annotation-free segmentation of oct angiographs. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 330–340. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_32

    Chapter  Google Scholar 

  18. Murray, C.D.: The physiological principle of minimum work: I. the vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. 12(3), 207–214 (1926)

    Google Scholar 

  19. Ohnishi, T., et al.: Three-dimensional vessel segmentation in whole-tissue and whole-block imaging using a deep neural network: proof-of-concept study. Am. J. Pathol. 191(3), 463–474 (2021)

    Article  Google Scholar 

  20. Ritman, E.L.: Current status of developments and applications of micro-CT. Annu. Rev. Biomed. Eng. 13, 531–552 (2011)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Schreiner, W., Karch, R., Neumann, F., Neumann, M.: Constrained constructive optimization of arterial tree models. Scaling Biol. 145, 65 (2000)

    MATH  Google Scholar 

  23. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  25. Todorov, M.I., et al.: Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17(4), 442–449 (2020)

    Article  Google Scholar 

  26. Xu, P., et al.: A hybrid approach to full-scale reconstruction of renal arterial network. Sci. Rep. 13(1), 7569 (2023)

    Article  MathSciNet  Google Scholar 

  27. Zhang, J., Zhang, Y., Xu, X.: Pyramid u-net for retinal vessel segmentation. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1125–1129. IEEE (2021)

    Google Scholar 

  28. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9242–9251 (2018)

    Google Scholar 

  29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidi Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 964 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, P., Lee, B., Sosnovtseva, O., Sørensen, C.M., Erleben, K., Darkner, S. (2023). Extremely Weakly-Supervised Blood Vessel Segmentation with Physiologically Based Synthesis and Domain Adaptation. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics