Skip to main content

ScribSD: Scribble-Supervised Fetal MRI Segmentation Based on Simultaneous Feature and Prediction Self-distillation

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14307))

Included in the following conference series:

  • 504 Accesses

Abstract

Automatic segmentation of different organs in fetal Magnetic Resonance Imaging (MRI) plays an important role in measuring the development of the fetus. However, obtaining a large amount of high-quality manually annotated fetal MRI is time-consuming and requires specialized knowledge, which hinders the widespread application that relies on such data to train a model with good segmentation performance. Using weak annotations such as scribbles can substantially reduce the annotation cost, but often leads to poor segmentation performance due to insufficient supervision. In this work, we propose a Scribble-supervised Self-Distillation (ScribSD) method to alleviate this problem. For a student network supervised by scribbles and a teacher based on Exponential Moving Average (EMA), we first introduce prediction-level Knowledge Distillation (KD) that leverages soft predictions of the teacher network to supervise the student, and then propose feature-level KD that encourages the similarity of features between the teacher and student at multiple scales, which efficiently improves the segmentation performance of the student network. Experimental results demonstrate that our KD modules substantially improve the performance of the student, and our method outperforms five state-of-the-art scribble-supervised learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Budd, S., et al.: Detecting hypo-plastic left heart syndrome in fetal ultrasound via disease-specific atlas maps. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 207–217. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_20

    Chapter  Google Scholar 

  2. Chen, Q., Hong, Y.: Scribble2d5: weakly-supervised volumetric image segmentation via scribble annotations. In: MICCAI, pp. 234–243. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_23

  3. Fidon, L., et al.: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 647–657. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_60

    Chapter  Google Scholar 

  4. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS, pp. 281–296 (2005)

    Google Scholar 

  5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS, pp. 1–9 (2015)

    Google Scholar 

  6. Kim, B., Ye, J.C.: Mumford-Shah loss functional for image segmentation with deep learning. IEEE Trans. Image Process. 29, 1856–1866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2

    Chapter  Google Scholar 

  8. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR, pp. 3159–3167 (2016)

    Google Scholar 

  9. Liu, X., et al.: Weakly supervised segmentation of COVID19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  10. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: MICCAI, pp. 528–538. Springer (2022). https://doi.org/10.1007/978-3-031-16431-6_50

  11. Luo, X., et al.: WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image. Med. Image Anal. 82, 102642 (2022)

    Article  Google Scholar 

  12. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS, pp. 1–10 (2019)

    Google Scholar 

  13. Obukhov, A., Georgoulis, S., Dai, D., Van Gool, L.: Gated CRF loss for weakly supervised semantic image segmentation. In: NeurIPS, pp. 1–9 (2019)

    Google Scholar 

  14. Rajchl, M., et al.: Deepcut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36(2), 674–683 (2016)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: ISBI, pp. 720–724. IEEE (2018)

    Google Scholar 

  17. Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised cnn segmentation. In: CVPR, pp. 1818–1827 (2018)

    Google Scholar 

  18. Tang, M., et al.: On regularized losses for weakly-supervised CNN segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 524–540. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_31

    Chapter  Google Scholar 

  19. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In NeurIPS, pp. 1195–1204 (2017)

    Google Scholar 

  20. Torrents-Barrena, J., et al.: Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI. Med. Image Anal. 54, 263–279 (2019)

    Article  Google Scholar 

  21. Uus, A.U., et al.: Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21–36 weeks GA range. Med. Image Anal. 80, 102484 (2022)

    Article  Google Scholar 

  22. Valvano, G., Leo, A., Tsaftaris, S.A.: Learning to segment from scribbles using multi-scale adversarial attention gates. IEEE Trans. Med. Imaging 40(8), 1990–2001 (2021)

    Article  Google Scholar 

  23. Wu, K., Du, B., Luo, M., Wen, H., Shen, Y., Feng, J.: Weakly supervised brain lesion segmentation via attentional representation learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 211–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_24

    Chapter  Google Scholar 

  24. Xu, K., Rui, L., Li, Y., Gu, L.: Feature normalized knowledge distillation for image classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 664–680. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_40

    Chapter  Google Scholar 

  25. Zhang, X., et al.: Confidence-aware cascaded network for fetal brain segmentation on MR images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 584–593. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_55

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 62271115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, Y., Zhao, Q., Wei, L., Lu, T., Zhang, S., Wang, G. (2023). ScribSD: Scribble-Supervised Fetal MRI Segmentation Based on Simultaneous Feature and Prediction Self-distillation. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics